Log in

In-situ decorated gold nanoparticles on polyaniline with enhanced electrocatalysis toward dopamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Gold nanoparticles were in-situ decorated on top of a polyaniline film (GNPs–PANI) via the direct electroreduction of the adsorbed AuCl -4 ions on a glassy carbon electrode that previously was coated with PANI by electropolymerization. The GNPs–PANI composite and the performance of the resultant sensors were investigated in some detail. The sensor was applied to the oxidation of dopamine (DA) with improved catalytic activity. Its catalytic current showed wide linear response toward dopamine ranging from 3 to 115 μM, with a low detection limit of 0.8 μM (S/N=3). In addition, the sensor exhibits easy-operation, fast response to dopamine, as well as excellent reproducibility and stability.

Gold nanoparticles decorated polyaniline (GNPs-PANI) was prepared via electrosynthesis. The GNPs-PANI composite showed good catalytic activity toward the oxidation of dopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sarma TK, Chowdhury D, Paul A, Chattopadhyay A (2002) Synthesis of Au nanoparticle-conductive polyaniline composite using H2O2 as oxidising as well as reducing agent. Chem Commun 1048

  2. Chen D, Wang G, Li JH (2006) Interfacial bioelectrochemistry: fabrication properties and applications of functional nanostructured biointerfaces. J Phys Chem C 111:2351

    Article  Google Scholar 

  3. Wang Q, Yun Y, Zheng J (2009) Nonenzymatic hydrogen peroxide sensor based on a polyaniline-single walled carbon nanotubes composite in a room temperature ionic liquid. Microchim Acta 167:153

    Article  CAS  Google Scholar 

  4. Feng JJ, Wang AJ, Hildebrandt P (2010) Electron transfer of proteins at nano-biointerfaces- Biocompatible Nanomaterials: Synthesis, Characterization and Application in Analytical Chemistry, Nova Science Publishers, ASAP

  5. Li J, Yuan R, Chai Y, Zhang T, Che X (2010) Direct electrocatalytic reduction of hydrogen peroxide at a glassy carbon electrode modified with polypyrrole nanowires and platinum hollow nanospheres. Microchim Acta: ASAP

  6. Ernst AZ, Zoladek S, Wiaderek K, Cox JA, Kolary-Zurowska A, Mieunikowski K, Kulesza PJ (2008) Network films of conducting polymer-linked polyoxometalate-modified gold nanoparticles: preparation and electrochemical characterization. Electrochim Acta 53:3924

    Article  CAS  Google Scholar 

  7. Cuenya BR, Baeck SH, Jaramillo TF, McFarland EW (2003) Size- and support-dependent electronic and catalytic properties of Au0/Au3+ nanoparticles synthesized from block copolymer micelles. J Am Chem Soc 125:12928

    Article  Google Scholar 

  8. Matsui J, Akamatsu K, Nishiguchi S, Miyoshi D, Nawafune H, Tamaki K, Sugimoto N (2004) Composite of Au nanoparticles and molecularly imprinted polymer as a sensing material. Anal Chem 76:1310

    Article  CAS  Google Scholar 

  9. Fredj HB, Helali S, Esseghaier C, Vonna L, Vidal L, Abdelghani A (2008) Labeled magnetic nanoparticles assembly on polypyrrole film for biosensor applications. Talanta 75:740

    Article  CAS  Google Scholar 

  10. Pacios R, Marcilla R, Pozo-Gonzalo C, Pomposo J, Grande H, Aizpurua J, Mecerreyes D (2007) Combined electrochromic and plasmonic optical responses in conducting polymer/metal nanoparticle films. J Nanosci Nanotechnol 7:2938

    Article  CAS  Google Scholar 

  11. Zhang LJ, Wan MX (2003) Polyaniline/TiO2 composite nanotubes. J Phys Chem B 107:6748

    Article  CAS  Google Scholar 

  12. Liang L, Liu J, Windisch CF, Exarhos GJ, Lin YH (2002) Direct assembly of large arrays of oriented conducting polymer nanowires. Angew Chem Int Ed 41:3665

    Article  CAS  Google Scholar 

  13. Huang HP, Zhang YM, Sun DZ, Zhu GY (2007) Polyaniline-Au nanoparticles modified glassy carbon electrode and its' catalytic research towards hydrogen peroxide. Chin J Anal Chem 35:1639

    Article  Google Scholar 

  14. Liu YG, Feng XM, Shen JM, Zhu JJ, Hou WH (2008) Fabrication of a novel glucose biosensor based on a highly electroactive polystyrene/polyaniline/Au nanocomposite. J Phys Chem B 112:9237

    Article  CAS  Google Scholar 

  15. Pandey P, Singh S, Arya S, Sharma A, Datta M, Malhotra B (2008) Gold nanoparticle-polyaniline composite films for glucose sensing. J Nanosci Nanotechnol 8:3158

    Article  CAS  Google Scholar 

  16. Granot E, Katz E, Basnar B, Willner I (2005) Enhanced bioelectrocatalysis using Au-nanoparticle/polyaniline hybrid systems in thin films and microstructured rods assembled on electrodes. Chem Mater 17:4600

    Article  CAS  Google Scholar 

  17. Feng XM, Mao CJ, Yang G, Hou WH, Zhu JJ (2006) Polyaniline/Au composite hollow spheres: synthesis, characterization, and application to the detection of dopamine. Langmuir 22:4384

    Article  CAS  Google Scholar 

  18. Feng JJ, Xu JJ, Chen HY (2006) Direct electron transfer and electrocatalysis of hemoglobin adsorbed onto electrodeposited mesoporous tungsten oxide. Electrochem Commun 8:77

    Article  CAS  Google Scholar 

  19. Lee DU, Pradhan D, Mouawia R, Oh DH, Heinig NF, Leung KT, Prouzet E (2009) ZnO nanostructures grown onto polypyrrole films prepared in swollen liquid crystals via integrative chemistry. Chem Mater 22:218

    Article  Google Scholar 

  20. Feng JJ, Gernert U, Hildebrandt P, Weidinger IM (2010) Induced SER-activity in nanostructured Ag-silica-Au supports via long-range plasmon coupling. Adv Func Mater 20:1954

    Article  CAS  Google Scholar 

  21. Tang Y, Pan K, Wang X, Liu C, Luo S (2010) Electrochemical synthesis of polyaniline in surface-attached poly(acrylic acid) network, and its application to the electrocatalytic oxidation of ascorbic acid. Microchim Acta 168:231

    Article  CAS  Google Scholar 

  22. Feng JJ, Lu YH, Gernert U, Hildebrandt P, Murgida DH (2010) Electrosynthesis of SER-active silver nanopillar electrode arrays. J Phys Chem C 114:7280

    Article  CAS  Google Scholar 

  23. Li M, Zhao G, Yue Z, Huang S (2009) Sensor for traces of hydrogen peroxide using an electrode modified by multiwalled carbon nanotubes, a gold-chitosan colloid, and Prussian blue. Microchim Acta 167:167

    Article  CAS  Google Scholar 

  24. Feng JJ, Gernert U, Sezer M, Kuhlmann U, Murgida D, David C, Richter M, Knorr A, Hildebrandt P, Weidinger IM (2009) Novel Au-Ag hybrid device for electrochemical SE(R)R spectroscopy in a wide potential and spectral Range. Nano Lett 9:298

    Article  CAS  Google Scholar 

  25. Xue HG, Shen ZQ, Li CM (2005) Improved selectivity and stability of glucose biosensor based on in situ electropolymerized polyaniline-polyacrylonitrile composite film. Biosens Bioelectron 20:2330

    Article  CAS  Google Scholar 

  26. Li Y, Lu G, Wu X, Shi G (2006) Electrochemical fabrication of two-dimensional palladium nanostructures as substrates for surface enhanced Raman scattering. J Phys Chem B 110:24585

    Article  CAS  Google Scholar 

  27. Patra S, Munichandraiah N (2008) Electrooxidation of methanol on Pt-modified conductive polymer PEDOT. Langmuir 25:1732

    Article  Google Scholar 

  28. Chen G, Wang ZY, Yang T, Huang DD, **a DG (2006) Electrocatalytic hydrogenation of 4-chlorophenol on the glassy carbon electrode modified by composite polypyrrole/palladium film. J Phys Chem B 110:4863

    Article  CAS  Google Scholar 

  29. Miyama T, Yonezawa Y (2004) Aggregation of photolytic gold nanoparticles at the surface of chitosan films. Langmuir 20:5918

    Article  CAS  Google Scholar 

  30. Zhou Y, Itoh H, Uemura T, Naka K, Chujo Y (2001) Synthesis of novel stable nanometer-sized metal (M = Pd, Au, Pt) colloids protected by a π-conjugated polymer. Langmuir 18:277

    Article  Google Scholar 

  31. Rao CRK, Trived DC (2006) A novel one-pot synthesis of free standing Pd–PPy films: Observation of enhanced catalytic effect by Pd–Ppy layers. Catal Commun 7:662

    Article  CAS  Google Scholar 

  32. Neugebauer H, Sariciftci NS, Kuzmany H, Neckel A (1988) In-situ FTIR spectro-electrochemistry of polyaniline. Microchim Acta 94:265

    Article  Google Scholar 

  33. O’Mullane AP, Dale SE, Macpherson JV, Unwin PR (2004) Fabrication and electrocatalytic properties of polyaniline/Pt nanoparticle composites. Chem Commun 4:1606

    Article  Google Scholar 

  34. Kang ET, Neoh KG, Tan KL (1993) Polyaniline with high intrinsic oxidation state. Surf Interface Anal 20:833

    Article  CAS  Google Scholar 

  35. Wang JG, Neoh KG, Kang ET (2001) Preparation of nanosized metallic particles in polyaniline. J Colloid Interface Sci 239:78

    Article  CAS  Google Scholar 

  36. Baron R, Zayats M, Willner I (2005) Dopamine-, L-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity. Anal Chem 77:1566

    Article  CAS  Google Scholar 

  37. Zhang Y, Li B, Chen X (2010) Simple and sensitive detection of dopamine in the presence of high concentration of ascorbic acid using gold nanoparticles as colorimetric probes. Microchim Acta 168:107

    Article  CAS  Google Scholar 

  38. Zhu HR, Wu W, Zhang H, Fan LZ, Yang SH (2009) Highly selective and sensitive detection of dopamine in the presence of excessive ascorbic acid using electrodes modified with C60-functionalized multiwalled carbon nanotube films. Electroanal 21:2660

    Article  CAS  Google Scholar 

  39. Park M-K, Onishi K, Locklin J, Caruso F, Advincula RC (2003) Self-assembly and characterization of polyaniline and sulfonated polystyrene multilayer-coated colloidal particles and hollow shells. Langmuir 19:8550

    Article  CAS  Google Scholar 

  40. Baba A, Tian SJ, Stefani FC, **/dedo** properties of polyaniline thin films as studied by electrochemical-surface plasmon spectroscopy and by the quartz crystal microbalance. J Electroanal Chem 562:95

    Article  CAS  Google Scholar 

  41. Liu JY, Tian SJ, Knoll W (2005) Properties of polyaniline/carbon nanotube multilayer films in neutral solution and their application for stable low-potential detection of reduced β-nicotinamide adenine dinucleotide. Langmuir 21:5596

    Article  CAS  Google Scholar 

  42. Ashok Kumar S, Chen SM (2008) Electroanalysis of NADH using conducting and redox active polymer/carbon nanotubes modified electrodes —A review. Sensors 8:739

    Article  Google Scholar 

  43. Zakharchuk NF, Meyer B, Hennig H, Scholz F, Stojek A, Jaworsi ZJ (1995) A comparative study of Prussian-Blue-modified graphite paste electrodes and solid graphite electrodes with mechanically immobilized Prussian blue. J Electroanal Chem 398:23

    Article  Google Scholar 

  44. Zhang L (2008) Covalent modification of glassy carbon electrode with cysteine for the determination of dopamine in the presence of ascorbic acid. Microchim Acta 161:191

    Article  CAS  Google Scholar 

  45. Yin TJ, Wei WZ, Zeng JX (2006) Selective detection of dopamine in the presence of ascorbic acid by use of glassy-carbon electrodes modified with both polyaniline film and multi-walled carbon nanotubes with incorporated β-cyclodextrin. Anal Bioanal Chem 386:2087

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Nation Natural Science foundation of China (Nos. 20805011, 20905021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiu-Ju Feng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 947 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, AJ., Feng, JJ., Li, YF. et al. In-situ decorated gold nanoparticles on polyaniline with enhanced electrocatalysis toward dopamine. Microchim Acta 171, 431–436 (2010). https://doi.org/10.1007/s00604-010-0452-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0452-8

Keywords

Navigation