Log in

An Innovative Scheme to Make an Initial Guess for Iterative Optimization Methods to Calibrate Material Parameters of Strain-Hardening Elastoplastic Models

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Optimization can apply in almost every branch of science and technology. In particular, a gradient-based iterative method is a mathematical optimization procedure that can be used to make decisions. The gradient-based optimization method can only find a local minimum of the objective function if the algorithm starts with the appropriate initial data. The ambition of this article is to develop a new scheme to make an initial guess for iterative optimization methods to calibrate accurately the material parameters of strain-hardening elastoplastic constitutive models based on the test data. The elastoplastic models are Drucker–Prager and modified Cam-Clay, and the data obtained from triaxial, oedometric, and hydrostatic tests. The validity of proposed material parameters is evaluated using a home-made finite-element simulator. The results emphasize the ability of the proposed procedure to accurately calibrate material parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. https://github.com/labmec/neopz.

References

  • Aydan Ö (2019) Rock mechanics and rock engineering. CRC Press, London

    Book  Google Scholar 

  • Bazaraa (2006) Nonlinear programming: theory and algorithms, 3rd edition. Wiley, New York

    Book  Google Scholar 

  • Callari C, Auricchio F, Sacco E (1998) A finite-strain cam-clay model in the framework of multiplicative elasto-plasticity. Int J Plast 14(12):1155–1187

    Article  Google Scholar 

  • Cekerevac C, Girardin S, Klubertanz G, Laloui L (2006) Calibration of an elasto-plastic constitutive model by a constrained optimisation procedure. Comput Geotech 33(8):432–443

    Article  Google Scholar 

  • Chong EK, Zak SH (2001) An Introduction to Optimization. Wiley, New York

    Google Scholar 

  • de Souza Neto EA, Peri D, Owen DRJ (2008) Computational methods for plasticity. Wiley, New York

    Book  Google Scholar 

  • Devloo PRB (1997) PZ: an object oriented environment for scientific programming. Comput Methods Appl Mech Eng 150(1–4):133–153

    Article  Google Scholar 

  • Devloo PRB (2000) Object oriented tools for scientific computing. Eng Comput 16(1):63–72

    Article  Google Scholar 

  • Doherty J, Alguire H, Wood DM (2012) Evaluating modified cam clay parameters from undrained triaxial compression data using targeted optimization. Can Geotech J 49(11):1285–1292

    Article  Google Scholar 

  • Drucker DC, Prager W (1952) Soil mechanics and plastic analysis or limit design. Q Appl Math 10(2):157–165

    Article  Google Scholar 

  • Feng Y, Zamani K, Yang H, Wang H, Wang F, Jeremić B (2019) Procedures to build trust in nonlinear elastoplastic integration algorithm: solution and code verification. Eng Comput 36(4):1643–1656

    Article  Google Scholar 

  • Ferreira D (2019) DIANA finite element analysis, userś manual, version 10.3. DIANA, Delft

  • Ghaboussi J, Garrett JH, Wu X (1991) Knowledge-based modeling of material behavior with neural networks. J Eng Mech 117(1):132–153

    Article  Google Scholar 

  • Graham J (2006) The 2003 R.M. Hardy lecture: soil parameters for numerical analysis in clay. Can Geotech J 43(2):187–209

  • Han H, Yin S (2018) Determination of in-situ stress and geomechanical properties from borehole deformation. Energies 11(1):131

    Article  Google Scholar 

  • Ichikawa Y, Ito T, Mroz Z (1990) A strain localization condition applying multi-response theory. Ing-Arch 60:542–552

    Google Scholar 

  • Karakus M, Fowell R (2005) Back analysis for tunnelling induced ground movements and stress redistribution. Tunnel Undergr Space Technol 20(6):514–524

    Article  Google Scholar 

  • Kowalska M (2007) Calibration of modified cam clay model with use of loading path method and genetic algorithms. In: 18th European young geotechnical engineers’ conference held in Ancona, Italy

  • Krabbenhoft K, Lyamin A (2012) Computational cam clay plasticity using second-order cone programming. Comput Methods Appl Mech Eng 209–212:239–249

    Article  Google Scholar 

  • Li M, Cao Y, Shen W, Shao J (2017) A damage model of mechanical behavior of porous materials: application to sandstone. Int J Damage Mech 27(9):1325–1351

    Article  Google Scholar 

  • Macari EJ, Samarajiva P, Wathugala W (2005) Selection and calibration of soil constitutive model parameters using genetic algorithms. In soil constitutive models. American Society of Civil Engineers, New York

    Google Scholar 

  • Mattsson H, Klisinski M, Axelsson K (2001) Optimization routine for identification of model parameters in soil plasticity. Int J Numer Anal Methods Geomech 25(5):435–472

    Article  Google Scholar 

  • Moslemi N, Zardian MG, Ayob A, Redzuan N, Rhee S (2019) Evaluation of sensitivity and calibration of the Chaboche kinematic hardening model parameters for numerical ratcheting simulation. Appl Sci 9(12):2578

    Article  Google Scholar 

  • Navarro V, Candel M, Barenca A, Yustres A, García B (2007) Optimisation procedure for choosing cam clay parameters. Comput Geotech 34(6):524–531

    Article  Google Scholar 

  • Obrzud RF, Vulliet L, Truty A (2009) Optimization framework for calibration of constitutive models enhanced by neural networks. Int J Numer Anal Methods Geomech 33(1):71–94

    Article  Google Scholar 

  • Perić D (2006) Analytical solutions for a three-invariant cam clay model subjected to drained loading histories. Int J Numer Anal Methods Geomech 30(5):363–387

    Article  Google Scholar 

  • Qian J, Xu W, Mu L, Wu A (2020) Calibration of soil parameters based on intelligent algorithm using efficient sampling method. Undergr Space

  • Rios LM, Sahinidis NV (2012) Derivative-free optimization: a review of algorithms and comparison of software implementations. J Global Optim 56(3):1247–1293

    Article  Google Scholar 

  • Risnes R, Madland M, Hole M, Kwabiah N (2005) Water weakening of chalk-mechanical effects of water-glycol mixtures. J Petrol Sci Eng 48(1–2):21–36

    Article  Google Scholar 

  • Rocscience (2015) Rocscience users manual Inc., Toronto

  • Rudnicki JW (1986) Fluid mass sources and point forces in linear elastic diffusive solids. Mech Mater 5(4):383–393

    Article  Google Scholar 

  • Ryckelynck D, Benziane DM (2016) Hyper-reduction framework for model calibration in plasticity-induced fatigue. Adv Model Simul Eng Sci 3(1)

  • Sagrilo LVS, de Sousa JRM, Lima ECP, Porto EC, Fernandes JVV (2012) A study on the holding capacity safety factors for torpedo anchors. J Appl Math 2012:1–18

    Article  Google Scholar 

  • Sanei M, Durán O, Devloo PR, Santos ES (2020) An innovative procedure to improve integration algorithm for modified cam-clay plasticity model. Comput Geotech

  • Santos E, Ferreira F (2010) Mechanical behavior of a Brazilian off-shore carbonate reservoir. In: 44th U.S. rock mechanics symposium and 5th U.S.-Canada rock mechanics symposium, Salt Lake City

  • Seidl DT, Granzow BN (2020) Calibration of elastoplastic constitutive model parameters from full-field data with automatic differentiation-based sensitivities. Preprint

  • Shao J-F, **e S-Y (2013) Elastoplastic behavior of ductile porous rocks. In: Constitutive modeling of soils and rocks, pp 187–210. ISTE

  • Shao J, Jia Y, Kondo D, Chiarelli A (2006) A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions. Mech Mater 38(3):218–232

    Article  Google Scholar 

  • Shen W, Shao J (2017) Some micromechanical models of elastoplastic behaviors of porous geomaterials. J Rock Mech Geotech Eng 9(1):1–17

    Article  Google Scholar 

  • Shuku T, Murakami A, Ichi Nishimura S, Fujisawa K, Nakamura K (2012) Parameter identification for cam-clay model in partial loading model tests using the particle filter. Soils Found 52(2):279–298

    Article  Google Scholar 

  • Systémes D (2012) Abaqus/standard userś manual, version 6.12. Simulia

  • **e S, Shao J (2006) Elastoplastic deformation of a porous rock and water interaction. Int J Plast 22(12):2195–2225

    Article  Google Scholar 

  • **e SY, Shao JF (2014) An experimental study and constitutive modeling of saturated porous rocks. Rock Mech Rock Eng 48(1):223–234

    Article  Google Scholar 

  • Zhang C-L (2016) The stress-strain-permeability behaviour of clay rock during damage and recompaction. J Rock Mech Geotech Eng 8(1):16–26

    Article  Google Scholar 

Download references

Acknowledgements

M. Sanei, P.R.B. Devloo, and O. Durán thankfully acknowledge financial support from ANP-Brazilian National Agency of Petroleum, Natural Gas and Biofuels (ANP-PETROBRAS) (grant 2014/00090-2). P.R.B. Devloo also acknowledges financial support from FAPESP, Brazil—Fundação de Amparo á Pesquisa do Estado de São Paulo, Brazil (grant 2017/15736-3), and from CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant 310369/2006-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manouchehr Sanei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Development of Analytical Equations for \(\eta\) and \(\xi _\mathrm{c}\)

The analytical equations to compute the initial guess for parameters \(\eta\) and \(\xi _\mathrm{c}\) are developed. The proposed equations are obtained using experimental data that are at least two points. The points can be the extreme points, namely \(pt_{1}=\left\{ P_1,\sqrt{J_{2_1}}\right\}\) and \(pt_{2}=\left\{ P_2,\sqrt{J_{2_2}}\right\}\), where \(P_2>P_1\) (Fig. 20a). The analytical equations are derived as:

$$\begin{aligned} \begin{array}{ccc} \sqrt{J_{2_{1}}}+\eta \,P_{1}-\xi _\mathrm{c}=0\\ &{} \implies &{} \sqrt{J_{2_{1}}}-\sqrt{J_{2_{2}}}+\eta \,\left( P_{1}-P_{2}\right) =0\\ \sqrt{J_{2_{2}}}+\eta \,P_{2}-\xi _\mathrm{c}=0. \end{array} \end{aligned}$$
(72)

Then, the parameter \(\eta\) is estimated by:

$$\begin{aligned} \eta _\mathrm{est}=\frac{\sqrt{J_{2_{1}}}-\sqrt{J_{2_{2}}}}{P_{1}-P_{2}}. \end{aligned}$$
(73)

The parameter \(\xi _\mathrm{c}\) is computed by:

$$\begin{aligned} \begin{array}{ccc} \sqrt{J_{2}}+\eta \,P-\xi _\mathrm{c}=0&\implies&\xi _{\mathrm{c}_\mathrm{est}}=\sum _{z=1}^{2}\left( \sqrt{J_{2_{z}}}+\eta \,P_{z}\right) .\end{array} \end{aligned}$$
(74)
Fig. 20
figure 20

The selected points to estimate the initial guess for material parameters of: a Drucker–Prager, and b modified Cam-Clay, \(P^{\circ }\), and \(p_\mathrm{t}\)

Development of Analytical Equations for \(P^{\circ }\), \(p_\mathrm{t}\), and eC

The analytical equations are developed to compute the initial guess for parameters \(P^{\circ }\), \(p_\mathrm{t}\), and eC. The proposed equations are obtained using hydrostatic test data that are at least three points. The points can be extremes and an intermediate point. The analytical equations are developed by considering \(p_{zt}=P^{\circ }+p_\mathrm{t}\), and taking the derivative of \(P_\mathrm{cc}=P\) with respect to \(\epsilon _\mathrm{ev}\), as:

$$\begin{aligned} \begin{array}{ccc} P=-p_\mathrm{t}+p_{zt}\exp \left[ -\mathrm{eC}\;\epsilon _\mathrm{ev}\right]\Rightarrow & {} P^{'}=\frac{\mathrm{d}P}{\mathrm{d}\epsilon _\mathrm{ev}}=-\mathrm{eC}\,p_{zt}\exp \left[ -\mathrm{eC}\;\epsilon _\mathrm{ev}\right] . \end{array} \end{aligned}$$
(75)

The three selected points are called \(pt_{1}=\left\{ \epsilon _{\mathrm{ev}_{1}}, P_{1}\right\}\), \(pt_{2}=\left\{ \epsilon _{\mathrm{ev}_{2}},P_{2}\right\}\), and \(pt_{3}=\left\{ \epsilon _{\mathrm{ev}_{3}},P_{3}\right\}\), where \(\epsilon _{\mathrm{ev}_{3}}<\epsilon _{\mathrm{ev}_{2}}<\epsilon _{\mathrm{ev}_{1}}\) (Fig. 20b).

1.1 Estimation of eC

By taking two points pt\(_{z}\) and pt\(_{ w}\), the derivative \(P^{'}\) for each point is obtained as:

$$\begin{aligned} \begin{array}{c} P_{z}^{'}=-\mathrm{eC}\,p_{zt}\exp \left[ -\mathrm{eC}\;\epsilon _{\mathrm{ev}_z}\right] \\ P_{ w}^{'}=-\mathrm{eC}\,p_{zt}\exp \left[ -\mathrm{eC}\;\epsilon _{\mathrm{ev}_{ w}}\right] . \end{array} \end{aligned}$$
(76)

The parameter eC is computed by dividing \(P_{z}^{'}\) by \(P_{ w}^{'}\)

$$\begin{aligned} \begin{array}{c} \frac{P_{z}^{'}}{P_{w}^{'}}=\frac{\exp \left[ -\mathrm{eC}\;\epsilon _{\mathrm{ev}_z}\right] }{\exp \left[ -\mathrm{eC}\;\epsilon _{\mathrm{ev}_w}\right] }=\exp \left[ -\mathrm{eC}\;(\epsilon _{\mathrm{ev}_z}-\epsilon _{\mathrm{ev}_w})\right] \\ \ln \left( \frac{P_{z}^{'}}{P_{w}^{'}}\right) =-\mathrm{eC}\;(\epsilon _{\mathrm{ev}_z}-\epsilon _{\mathrm{ev}_w})\\ \mathrm{eC}_\mathrm{est}=-\frac{\ln \left( {P_{z}^{'}}/{P_{w}^{'}}\right) }{\epsilon _{\mathrm{ev}_z}-\epsilon _{\mathrm{ev}_w}}, \end{array} \end{aligned}$$
(77)

where

$$\begin{aligned} {\left\{ \begin{array}{ll} \begin{array}{c} P_{z}^{'}\cong \frac{P_{1}-P_{2}}{\epsilon _{\mathrm{ev}_{1}}-\epsilon _{\mathrm{ev}_{2}}}\\ \epsilon _{\mathrm{ev}_{z}}=\frac{\epsilon _{\mathrm{ev}_{1}}+\epsilon _{\mathrm{ev}_{2}}}{2}\\ P_{w}^{'}\cong \frac{P_{3}-P_{2}}{\epsilon _{\mathrm{ev}_{3}}-\epsilon _{\mathrm{ev}_{2}}}\\ \epsilon _{\mathrm{ev}_{w}}=\frac{\epsilon _{\mathrm{ev}_{3}}+\epsilon _{\mathrm{ev}_{2}}}{2}, \end{array}&\,\end{array}\right. } \end{aligned}$$
(78)

where the numbers 1, 2, 3 are indices of three hydrostatic points.

1.2 Estimation of \(p_{zt}\)

By taking two points pt\(_{z}\) and pt\(_{w}\), the P for each point is obtained as:

$$\begin{aligned} \begin{array}{c} P_{z}=-p_\mathrm{t}+p_{zt}\exp \left[ -\mathrm{eC}\;\epsilon _{\mathrm{ev}_z}\right] \\ P_{w}=-p_\mathrm{t}+p_{zt}\exp \left[ -\mathrm{eC}\;\epsilon _{\mathrm{ev}_w}\right] . \end{array} \end{aligned}$$
(79)

The parameter \(p_{zt}\) is gotten by subtracting \(P_{w}\) from \(P_{z}\), as:

$$\begin{aligned} \begin{array}{c} \left( P_{z}-P_{w}\right) =p_{zt}\left( \exp \left[ -\mathrm{eC}\;\epsilon _{\mathrm{ev}_z}\right] -\exp \left[ -\mathrm{eC}\;\epsilon _{\mathrm{ev}_w}\right] \right) \\ p_{zt}=\frac{P_{z}-P_{w}}{\exp \left[ -\mathrm{eC}\;\epsilon _{\mathrm{ev}_z}\right] -\exp \left[ -\mathrm{eC}\;\epsilon _{\mathrm{ev}_w}\right] }. \end{array} \end{aligned}$$
(80)

By selecting any pairs of three points pt\(_{1}\), pt\(_{2}\), and pt\(_{3}\), the parameter \(p_{zt}\) can be computed using Eq. (81). Here, the parameter \(p_{zt}\) is obtained from two extreme points, as:

$$\begin{aligned} p_{{zt}_\mathrm{est}}=\frac{P_{1}-P_{3}}{\exp \left( -\mathrm{eC}\,\epsilon _{\mathrm{ev}_{1}}\right) -\exp \left( -\mathrm{eC}\,\epsilon _{\mathrm{ev}_{3}}\right) }. \end{aligned}$$
(81)

1.3 Estimation of \(p_\mathrm{t}\)

The parameter \(p_\mathrm{t}\) is estimated using the below expression

$$\begin{aligned} \begin{array}{ccc} P=-p_\mathrm{t}+p_{zt}\exp \left[ -\mathrm{eC}\;\epsilon _\mathrm{ev}\right]\Rightarrow & {} p_\mathrm{t}=p_{zt}\exp \left[ -\mathrm{eC}\;\epsilon _\mathrm{ev}\right] -P. \end{array} \end{aligned}$$
(82)

Then

$$\begin{aligned} p_{\mathrm{t}_\mathrm{est}}=\sum _{z=1}^{3}\left( p_{zt}\exp \left( -\mathrm{eC}\, \epsilon _{\mathrm{ev}_{z}}\right) -P_{z}\right) . \end{aligned}$$
(83)

Results of the Norm Error and the Quantities of Material Parameters

The results of the \(L_2\) norm error and the quantities of material parameters of nonlinear elasticity using different initial guesses, such as: \(\left( 0,0,0\right)\), \(\left( 0.5,0.5,0.5\right)\), \(\left( 1.0,1.0,1.0\right)\), and \(\left( 14.856,-0.566,6.157\right)\) are given in Tables 13, 14, 15, and 16.

Table 13 The results of the method when the initial guess is \(\left( 0,0,0\right)\)
Table 14 The results of the method when the initial guess is \(\left( 0.5,0.5,0.5\right)\)
Table 15 The results of the method when the initial guess is \(\left( 1.0,1.0,1.0\right)\)
Table 16 The results of the method using the proposed initial guess \(\left( 14.856,-0.566,6.157\right)\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanei, M., Devloo, P.R.B., Forti, T.L.D. et al. An Innovative Scheme to Make an Initial Guess for Iterative Optimization Methods to Calibrate Material Parameters of Strain-Hardening Elastoplastic Models. Rock Mech Rock Eng 55, 399–421 (2022). https://doi.org/10.1007/s00603-021-02665-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-021-02665-y

Keywords

Navigation