Log in

Brittleness Index: From Conventional to Hydraulic Fracturing Energy Model

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The success of a hydraulic fracturing (HF) operation is strongly dependent on brittleness of the formation. Several models based on mechanical testing, mineral composition, and sonic log data have been proposed to quantify the brittleness of formations known as brittleness index (BI). The limitations of these conventional BI models, in particular, the consistency and applicability at field scale with the complex in situ conditions are poorly understood. We therefore developed a novel BI model based on the hydraulic fracture propagation energy (HFPE) criterion. A set of hydraulic fracturing (HF) experiments was conducted on samples with different mineralogy at true tri-axial stress conditions for model definition, i.e., the scaling law was employed to ensure that hydraulic fracture propagation resembles the field conditions. To assess the performance of the proposed BI model in predicting the rock fracability, the obtained results of the model on different samples were compared with conventional models. It was shown that the predictions of the conventional BI models are predominantly related to the failure characteristics of the rock rather than its fracability. We showed that such BI models cannot assess the hydraulic fracturing feasibility where complex failure mechanisms (i.e., splitting, shear, friction, etc.), geological condition (i.e., in situ stress) and operational factors (i.e., injection rate, fluid viscosity, etc.) are involved. The new proposed BI model, however, successfully predicted the fracability of different rock types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

BI:

Brittleness index

BIs:

Brittleness indices

HF:

Hydraulic fracturing

TTSC :

True tri-axial stress cell

UCS :

Uniaxial compressive strength

TCS :

Tri-axial compressive strength

BTT :

Brazilian tensile test

SCB :

Semi-circular bend

S1–4 :

Type of sample (1–4)

BHP:

Bottom hole pressure

HFPE:

Hydraulic fracture propagation energy

E :

Young’s modulus

v :

Poisson’s ratio

Ф :

Internal friction angle

σ T :

Tensile strength

K IC :

Fracture toughness

ε elastic :

Elastic strain

ε total :

Total strain

σ v :

Vertical stress

σ H :

Maximum horizontal stress

σ h :

Minimum horizontal stress

\(\emptyset\) :

Porosity

μ :

Viscosity

T :

Temperature

U s :

Elastic potential energy

U y :

Surface energy

U p :

Plastic deformation energy

E I :

Injection energy

ΔW :

Change of elastic potential energy

E HF :

The energy required for hydraulic fracture propagation

E G :

The energy required to create new fracture faces

E d :

Aseismic deformation energy according to fracture opening

E d (Ductile) :

Aseismic deformation energy according to fracture opening in ideally ductile rock

E d (Semi) :

Aseismic deformation energy according to fracture opening in semi-brittle rock

I :

Additional energy loss

I v :

Viscous dissipation energy

I l :

Fluid leak-off energy

E AES :

Seismic dissipated energy

E f :

Dissipated energy caused by friction of microshear plane

E H :

Dissipated energy caused by new surface creation of microshear failure

E R :

Dissipated energy through ultrasonic waves

Q(t):

Fluid injection rate

P b :

Breakdown pressure

P e :

BHP pressure when hydraulic fracture reaches the boundary

P(t):

Variable BHP with time during fracture propagation

t b :

Time of breakdown

t f :

Time at end of hydraulic fracture propagation

References

  • Abdolghafurian M, Feng R, Iglauer S, Gurevich B, Sarmadivaleh M (2017) Experimental comparative investigation of dynamic and static properties of reservoir rocks. In: Proceedings of one curtin international postgraduate conference, pp 10–12

  • Abu-Jdayil B, Ghzawi AA-M, Al-Malah KI, Zaitoun S (2002) Heat effect on rheology of light-and dark-colored honey. J Food Eng 51:33–38

    Article  Google Scholar 

  • Al-Khdheeawi EA, Vialle S, Barifcani A, Sarmadivaleh M, Iglauer S (2017) Impact of reservoir wettability and heterogeneity on CO2-plume migration and trap** capacity. Int J Greenh Gas Control 58:142–158

    Article  Google Scholar 

  • Altindag R, Guney A (2010) Predicting the relationships between brittleness and mechanical properties (UCS, TS and SH) of rocks. Sci Res Essays 5:2107–2118

    Google Scholar 

  • Bhandari B, D’Arcy B, Chow S (1999) Rheology of selected Australian honeys. J Food Eng 41:65–68

    Article  Google Scholar 

  • Bishop A (1967) Progressive failure-with special reference to the mechanism causing it. In: Proc. Geotech. Conf., Oslo, pp 142–150

  • Boroumand N, Eaton D (2012) Comparing energy calculations-hydraulic fracturing and microseismic monitoring. In: 74th EAGE conference and exhibition incorporating EUROPEC 2012

  • Bunger AP (2005) Near-surface hydraulic fracture. University of Minnesota, Minneapolis

    Google Scholar 

  • Chang S-H, Lee C-I, Jeon S (2002) Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Eng Geol 66:79–97

    Article  Google Scholar 

  • Chong KP, Kuruppu MD, Kuszmaul JS (1987) Fracture toughness determination of layered materials. Eng Fract Mech 28:43–54

    Article  Google Scholar 

  • De Pater C, Cleary M, Quinn T, Barr D, Johnson D, Weijers L (1994) Experimental verification of dimensional analysis for hydraulic fracturing. SPE Prod Facil 9:230–238

    Article  Google Scholar 

  • Detournay E (2004) Propagation regimes of fluid-driven fractures in impermeable rocks. Int J Geomech 4:35–45

    Article  Google Scholar 

  • Detournay E (2016) Mechanics of hydraulic fractures. Annu Rev Fluid Mech 48:311–339

    Article  Google Scholar 

  • Detournay E, Peirce A, Bunger A (2007) Viscosity-dominated hydraulic fractures. In: 1st Canada-US rock mechanics symposium, 2007. American Rock Mechanics Association

  • Evans B, Fredrich JT, Wong TF (1990) The brittle-ductile transition in rocks: recent experimental and theoretical progress. The brittle–ductile transition in rocks. Geophys Monogr Ser 56:1–20

    Google Scholar 

  • Feng R, Sarmadivaleh M (2019) An integrated fracturing pressure diagnostic and ct scan approach for hydraulic fracture initiation and propagation. In: 81st EAGE conference and exhibition 2019

  • Feng R, Wang H, Abdolghafurian M, Tarom N, Hossein S, Ezdini A, Rezagholilou A (2018a) Optimized approach to conduct hydraulic fracturing test on true tri-axial stress condition. In: 52nd US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  • Feng R, Zhou G, Sarmadivaleh M, Rezagholilou A, Roshan H (2018b) The role of ductility in hydraulic fracturing: an experimental study. In: 52nd US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  • Feng R, Chen R, Sarmadivaleh M (2019) A practical fracability evaluation for tight sandstone reservoir with natural interface. APPEA J 59:221–227

    Article  Google Scholar 

  • Fischer-Cripps AC (2007) Introduction to contact mechanics, vol 101. Springer, New York

    Book  Google Scholar 

  • Fjar E, Holt RM, Raaen A, Risnes R, Horsrud P (2008) Petroleum related rock mechanics, vol 53. Elsevier, Amsterdam

    Google Scholar 

  • Goodfellow S, Nasseri M, Maxwell S, Young R (2015) Hydraulic fracture energy budget: insights from the laboratory. Geophys Res Lett 42:3179–3187

    Article  Google Scholar 

  • Griffith AA, Eng M (1921) VI. The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A 221:163–198

    Article  Google Scholar 

  • Guo F, Morgenstern N, Scott J (1993) An experimental investigation into hydraulic fracture propagation—part 1. Experimental facilities. In: International journal of rock mechanics and mining sciences and geomechanics abstracts, vol 3. Elsevier, Amsterdam, pp 177–188

  • Hajiabdolmajid V, Kaiser P, Martin C (2003) Mobilised strength components in brittle failure of rock. Geotechnique 53:327–336

    Article  Google Scholar 

  • Han D-H, Nur A, Morgan D (1986) Effects of porosity and clay content on wave velocities in sandstones. Geophysics 51:2093–2107

    Article  Google Scholar 

  • He W, Hayatdavoudi A (2018) A comprehensive analysis of fracture initiation and propagation in sandstones based on micro-level observation and digital imaging correlation. J Pet Sci Eng 164:75–86

    Article  Google Scholar 

  • He W, Hayatdavoudi A, Shi H, Sawant K, Huang P (2018) A preliminary fractal interpretation of effects of grain size and grain shape on rock strength. Rock Mech Rock Eng 5:1–21

    Google Scholar 

  • Heath LJ (1965) Variations in permeability and porosity of synthetic oil reservoir rock-methods of control. Soc Pet Eng J 5:329–332

    Article  Google Scholar 

  • Holt R, Unander T, Kenter C, Santarelli F (1993) Unloading effects on mechanical properties of a very weak artificial sandstone: applications to coring. Geotechnical Engineering of Hard Soils-Soft Rocks, Balkema

    Google Scholar 

  • Holt R, Fjaer E, Nes O, Alassi H (2011) A shaly look at brittleness. In: 45th US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  • Holt RM, Fjær E, Stenebråten JF, Nes O-M (2015) Brittleness of shales: relevance to borehole collapse and hydraulic fracturing. J Pet Sci Eng 131:200–209

    Article  Google Scholar 

  • Hucka V, Das B (1974) Brittleness determination of rocks by different methods. In: International journal of rock mechanics and mining sciences and geomechanics abstracts, vol 10. Elsevier, pp 389–392

  • Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech E24:351–369

    Google Scholar 

  • Jarvie DM, Hill RJ, Ruble TE, Pollastro RM (2007) Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull 91:475–499

    Article  Google Scholar 

  • Jiang T, Jia C, Wang H (2017) Shale gas horizontal well SRV fracturing technology, vol 27. Science China Press, Bei**g

    Google Scholar 

  • ** X, Shah SN, Roegiers J-C, Zhang B (2014) Fracability evaluation in shale reservoirs-an integrated petrophysics and geomechanics approach. In: SPE hydraulic fracturing technology conference. Society of Petroleum Engineers

  • ** X, Shah SN, Roegiers J-C, Zhang B (2015) An integrated petrophysics and geomechanics approach for fracability evaluation in shale reservoirs. SPE J 20:518–526

    Article  Google Scholar 

  • Lebedev M, Zhang Y, Sarmadivaleh M, Barifcani A, Al-Khdheeawi E, Iglauer S (2017) Carbon geosequestration in limestone: pore-scale dissolution and geomechanical weakening. Int J Greenhouse Gas Control 66:106–119

    Article  Google Scholar 

  • Legarth B, Huenges E, Zimmermann G (2005) Hydraulic fracturing in a sedimentary geothermal reservoir: results and implications. Int J Rock Mech Min Sci 42:1028–1041

    Article  Google Scholar 

  • Liu Y, Yin G, Li M, Zhang D, Deng B, Liu C, Lu J (2019a) Anisotropic mechanical properties and the permeability evolution of cubic coal under true triaxial stress paths. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-019-01748-1

    Article  Google Scholar 

  • Liu Y et al (2019b) Directional permeability evolution in intact and fractured coal subjected to true-triaxial stresses under dry and water-saturated conditions. Int J Rock Mech Min Sci 119:22–34

    Article  Google Scholar 

  • Lu Y, Zeng L, **e Q, ** Y, Hossain MM, Saeedi A (2019) Analytical modelling of wettability alteration-induced micro-fractures during hydraulic fracturing in tight oil reservoirs. Fuel 249:434–440

    Article  Google Scholar 

  • Luan X, Di B, Wei J, Li X, Qian K, **e J, Ding P (2014) Laboratory measurements of brittleness anisotropy in synthetic shale with different cementation. In: 2014 SEG annual meeting. Society of Exploration Geophysicists

  • Luan X, Di B, Wei J, Zhao J, Li X (2016) Creation of synthetic samples for physical modelling of natural shale. Geophys Prospect 64:898–914

    Article  Google Scholar 

  • Mack M, Warpinski N (2000) Mechanics of hydraulic fracturing. In: Economides MJ, Nolte KG (eds) Reservoir stimulation. Wiley, Chichester

    Google Scholar 

  • Maxwell SC, Shemeta JE, Campbell E, Quirk DJ (2008) Microseismic deformation rate monitoring. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers

  • Medlin W, Masse L (1986) Plasticity effects in hydraulic fracturing. J Pet Technol 38(9):995–1006

    Article  Google Scholar 

  • Middleton RS et al (2015) Shale gas and non-aqueous fracturing fluids: opportunities and challenges for supercritical CO2. Appl Energy 147:500–509

    Article  Google Scholar 

  • Nabipour A (2013) Experimental and numerical study of ultrasonic monitoring of hydraulic fracture propagation. Curtin University

  • Orowan E (1954) Energy criteria of fracture. Dept of Mechanical Engineering, Massachusetts Inst of Tech Cambridge, Massachusetts

    Google Scholar 

  • Papanastasiou P (1997) The influence of plasticity in hydraulic fracturing. Int J Fract 84:61–79

    Article  Google Scholar 

  • Papanastasiou P (1999) The effective fracture toughness in hydraulic fracturing. Int J Fract 96:127

    Article  Google Scholar 

  • Papanastasiou P, Atkinson C (2015) The brittleness index in hydraulic fracturing. In: 49th US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  • Papanastasiou P, Papamichos E, Atkinson C (2016) On the risk of hydraulic fracturing in CO2 geological storage. Int J Numer Anal Methods Geomech 40:1472–1484

    Article  Google Scholar 

  • Perez Altamar R, Marfurt K (2014) Mineralogy-based brittleness prediction from surface seismic data: application to the Barnett Shale. Interpretation 2:T255–T271

    Article  Google Scholar 

  • Rickman R, Mullen MJ, Petre JE, Grieser WV, Kundert D (2008) A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett Shale. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers

  • Roshan H, Asef M (2010) Characteristics of oil well cement slurry using CMC. SPE Drill Complet 25:328–335

    Article  Google Scholar 

  • Roshan H, Masoumi H, Regenauer-Lieb K (2017a) Frictional behaviour of sandstone: a sample-size dependent triaxial investigation. J Struct Geol 94:154–165

    Article  Google Scholar 

  • Roshan H, Masoumi H, Zhang Y, Al-Yaseri AZ, Iglauer S, Lebedev M, Sarmadivaleh M (2017b) Microstructural effects on mechanical properties of shaly sandstone. J Geotech Geoenviron Eng 144:06017019

    Article  Google Scholar 

  • Sarmadivaleh M, Rasouli V (2015) Test design and sample preparation procedure for experimental investigation of hydraulic fracturing interaction modes. Rock Mech Rock Eng 48:93–105

    Article  Google Scholar 

  • Shlyapobersky J (1985) Energy analysis of hydraulic fracturing. In: The 26th US symposium on rock mechanics (USRMS). American Rock Mechanics Association

  • Tarasov B, Potvin Y (2013) Universal criteria for rock brittleness estimation under triaxial compression. Int J Rock Mech Min Sci 59:57–69

    Article  Google Scholar 

  • Wang H (2015) Numerical modeling of non-planar hydraulic fracture propagation in brittle and ductile rocks using XFEM with cohesive zone method. J Pet Sci Eng 135:127–140

    Article  Google Scholar 

  • Wang FP, Gale JF (2009) Screening criteria for shale-gas systems. Gulf Coast Assoc Geol Soc Trans 59:779–793

    Google Scholar 

  • Wang H, Dyskin A, Dight P, Pasternak E, Hsieh A (2018a) Review of unloading tests of dynamic rock failure in compression. Eng Fract Mech. https://doi.org/10.1016/j.engfracmech.2018.12.022

  • Wang H, Dyskin A, Pasternak E, Dight P, Sarmadivaleh M (2018b) Effect of the intermediate principal stress on 3-D crack growth. Eng Fract Mech 204:404–420

    Article  Google Scholar 

  • Wang H, Dyskin A, Pasternak E, Dight P, Sarmadivaleh M (2019) Experimental and numerical study into 3D crack growth from a spherical pore in biaxial compression. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-019-01899-1

    Article  Google Scholar 

  • Warpinski NR, Du J, Zimmer U (2012) Measurements of hydraulic-fracture-induced seismicity in gas shales. SPE Prod Oper 27:240–252

    Google Scholar 

  • White WA, Pichler E (1959) Water-sorption characteristics of clay minerals. Circular no 266

  • Wong T-F, Baud P (2012) The brittle-ductile transition in porous rock: a review. J Struct Geol 44:25–53

    Article  Google Scholar 

  • Wygal R (1963) Construction of models that simulate oil reservoirs. Soc Pet Eng J 3:281–286

    Article  Google Scholar 

  • Yao Y (2012) Linear elastic and cohesive fracture analysis to model hydraulic fracture in brittle and ductile rocks. Rock Mech Rock Eng 45:375–387

    Article  Google Scholar 

  • Younessi A, Rasouli V, Wu B (2012) Proposing a sample preparation procedure for sanding experiments. In: ISRM

  • Yuan Y, Rezaee R, Verrall M, Hu S-Y, Zou J, Testmanti N (2018) Pore characterization and clay bound water assessment in shale with a combination of NMR and low-pressure nitrogen gas adsorption. Int J Coal Geol 194:11–21

    Article  Google Scholar 

  • Zeng L, Chen Y, Lu Y, Lau HC, Hossain M, Saeedi A, **e Q (2019) Interpreting water uptake by shale with ion exchange, surface complexation and disjoining pressure. Energy Fuels. https://doi.org/10.1021/acs.energyfuels.9b01732

    Article  Google Scholar 

  • Zhang D, Ranjith P, Perera M (2016a) The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing: a review. J Pet Sci Eng 143:158–170

    Article  Google Scholar 

  • Zhang Y, Xu X, Lebedev M, Sarmadivaleh M, Barifcani A, Iglauer S (2016b) Multi-scale x-ray computed tomography analysis of coal microstructure and permeability changes as a function of effective stress. Int J Coal Geol 165:149–156

    Article  Google Scholar 

  • Zhang Y, Lebedev M, Al-Yaseri A, Yu H, Xu X, Iglauer S (2018) Characterization of nanoscale rock mechanical properties and microstructures of a Chinese sub-bituminous coal. J Nat Gas Sci Eng 52:106–116

    Article  Google Scholar 

  • Zhao H, Wang X, Wang W, Mu E (2018) A simulation method based on energy criterion for network fracturing in shale gas reservoirs. J Nat Gas Sci Eng 52:295–303

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runhua Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, R., Zhang, Y., Rezagholilou, A. et al. Brittleness Index: From Conventional to Hydraulic Fracturing Energy Model. Rock Mech Rock Eng 53, 739–753 (2020). https://doi.org/10.1007/s00603-019-01942-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-019-01942-1

Keywords

Navigation