Log in

A Novel Contact Algorithm Based on a Distance Potential Function for the 3D Discrete-Element Method

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The combined finite–discrete-element method (FDEM) has made a groundbreaking progress in the computation of contact interaction. However, FDEM has a strict requirement on the element type, and the simulation result may be inconsistent due to a deficiency of physical meaning of the potential function. To address this problem, a new 3D discrete-element method based on a distance potential is proposed for a system consisting of a large number of arbitrary convex polyhedral elements. In this approach, a well-defined distance potential is proposed as a function of the penetration between the contact pairs. It exhibits a clear physical meaning and a precise measurement of the embedding between the elements in contact. The newly presented method provides a holonomic and accurate contact interaction without being influenced by the element shape. Therefore, the restraint of the element type in FDEM is removed and the proposed method can be used for arbitrary convex polyhedrons. In addition, an improved contact detection algorithm for non-uniform block discrete elements is provided to overcome the constraint of elements with the same size in the Munjiza-No Binary Search contact detection method. The new approach retains the merits of the FDEM and avoids its deficiencies. It is validated with well-known benchmark examples including an impact simulation, a friction experiment, a joint structure of a sliding rock mass, pillar impact, block accumulation, and analysis for the failure process of wedge slope. The results of this proposed method are in excellent agreement with the existing experimental measurements and analytical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51

Similar content being viewed by others

Abbreviations

CP:

Common plane

DEM:

Discrete-element method

DDA:

Discontinuous deformation analysis

FDEM:

The combined finite–discrete-element method

MMR:

Multi-step Munjiza–Rougier algorithm

NBS:

No binary search

NMM:

Numerical manifold method

LWSP:

Left structural weak surfaces

RWSP:

Right structural weak surfaces

\(\varphi\) :

Potential function

\(k\) :

Penalty parameter

\(V\) :

Volume

\({{\varvec{f}}_{\text{n}}}\) :

Normal contact force

\({V_{{\text{t}} \cap {\text{c}}}}\) :

Overlap** volume between the discrete elements \({\beta _{\text{t}}}\) and \({\beta _{\text{c}}}\)

\({\varphi _{\text{c}}}\) :

Potential function in \({V_{{\text{t}} \cap {\text{c}}}}\) belonging to the elements \({\beta _{\text{c}}}\)

\({\varphi _{\text{t}}}\) :

Potential function in \({V_{{\text{t}} \cap {\text{c}}}}\) belonging to the elements \({\beta _{\text{t}}}\)

\({S_{{\text{t}} \cap {\text{c}}}}\) :

Boundary surface of \({V_{{\text{t}} \cap {\text{c}}}}\)

\({\varvec{n}}\) :

Outward unit vector of the boundary surface \({S_{{\text{t}} \cap {\text{c}}}}\)

\({\varphi _{\text{d}}}\) :

Distance potential function

\({h_{\rm I}}\) :

Distance from the point p to the base \({\alpha _{\rm I}}\) of the sub-polyhedron

\(r\) :

Radius of the maximum inscribed sphere of a polyhedral element

\(S\) :

Intersection surface among the plane of the base of \({\beta _{\text{c}}}\) and the target sub-polyhedron of \({\beta _{\text{t}}}\)

\({S_1},{S_2} \ldots ,{S_n}\) :

Nodes of the intersection surface \(S\)

\(B\) :

Intersection polygon defined by the surface \(S\) and the base \(\alpha\) of \({\beta _{\text{c}}}\)

\({B_1},{B_2} \ldots ,{B_n}\) :

Nodes of the polygon \(B\)

\({x_i},{y_i}\) :

Local coordinates of the point on the polygonal surface \(B\)

\({A_1},{A_2} \ldots ,{A_n}\) :

Parameters of the formulation of distance potential function in local coordinate system

\(({x_1},{y_1})\) :

Local coordinates of \({B_1}\)

\(({x_2},{y_2})\) :

Local coordinates of \({B_2}\)

\(({x_3},{y_3})\) :

Local coordinates of \({B_3}\)

\({{\varvec{f}}_{{\text{n}},B}}\) :

Normal contact force over the polygonal surface \(B\)

\({{\varvec{n}}_B}\) :

Outward unit vector of the polygonal surface \(B\)

\({k_{\text{n}}}\) :

Normal contact stiffness

\({{\varvec{M}}_{x,B}},{{\varvec{M}}_{y,B}}\) :

Moments contributed by the contact normal force \({{\varvec{f}}_{{\text{n}},B}}\) in the local coordinate system \((x,y)\)

\({N_i}(\eta ,\zeta )\) :

Shape function

\(m\) :

Number of the divided triangular surfaces of the polygonal surface \(B\)

\(\left| J \right|\) :

Jacobi determinant of coordinate transformation

\({C_1},{C_2} \ldots ,{C_n}\) :

Parameters of the formulations of the normal contact force and moments in the natural coordinate system

\({{\varvec{M}}_{\eta ,B}},{{\varvec{M}}_{\zeta ,B}}\) :

Moments contributed by the contact normal force \({{\varvec{f}}_{{\text{n}},B}}\) in the natural coordinate system \((\eta ,\zeta )\)

\({\eta _{\text{n}}},{\zeta _{\text{n}}}\) :

Coordinates of the action position of the normal contact force in the natural coordinate system

\({n_{\text{s}}}\) :

Number of the boundary surfaces

\({\varvec{f}}_{{\text{s}}}^{i}\) :

Tangential contact force at step i

\(\Delta \varvec{\delta}_{{{\text{s,t}}}}^{i}\) :

Tangential increment displacement of each surface at step i

\({k_{\text{s}}}\) :

Tangential contact stiffness

\({\varvec{v}^i}\) :

Relative velocity of the contact element \({\beta _{\text{c}}}\) with respect to the target element \({\beta _{\text{t}}}\)

\(\varvec{v}_{c}^{i}\) :

Translational velocity of block \({\beta _{\text{c}}}\) at step i

\(\varvec{v}_{t}^{i}\) :

Translational velocity of block \({\beta _{\text{t}}}\) at step i

\(\varvec{\omega}_{{\text{c}}}^{i}\) :

Angular velocity of block \({\beta _{\text{c}}}\) at step i

\(\varvec{\omega}_{{\text{t}}}^{i}\) :

Angular velocity of block \({\beta _{\text{t}}}\) at step i

\(\Delta \varvec{\delta}_{{\text{s}}}^{i}\) :

Incremental tangential displacement at step i

\(\Delta {{\varvec{s}}^i}\) :

Incremental displacement between \({\beta _{\text{c}}}\) and \({\beta _{\text{t}}}\)

\({{\varvec{n}}_{\text{n}}}\) :

Unit direction vector of total normal contact force

\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{{\varvec{r}}}\) :

Rotation matrix that rotates the normal vector from step i − 1 to the normal vector at the current step i

\(\Delta {\varvec{f}}_{{\text{s}}}^{i}\) :

Incremental tangential contact force

\({\varphi _\mu }\) :

Maximum static friction angle

\(C\) :

Cohesion force

\({({f_{\text{s}}})_{\rm{max} }}\) :

Maximum possible value of the magnitude of the tangential force

\({\varvec{M}}_{{\text{s}}}^{i}\) :

Tangential contact moment at step i

\({\varvec{\gamma}_{\text{s}}}\) :

Vector from the force \({\varvec{f}}_{{\text{s}}}^{i}\) load position to the centroid of the element

\({d_i}\) :

Maximum circumradius for each group block

\(D\) :

Maximum circumradius among all the blocks

\({x_{{\text{cent}}}},{y_{{\text{cent}}}},{z_{{\text{cent}}}}\) :

Current coordinates of the centroids in the global coordinate system

\({x_k},{y_k},{z_k}\) :

Coordinates of the centroids when the elements are mapped into the cell

\(l\) :

Length of the cell

\({l_{\text{c}}}\) :

Distance between the centroids of the contact pairs

\({l_{\rm{max} }}\) :

Contact distance

\({l_{1\rm{max} }},{l_{2\rm{max} }}\) :

The longest distances between the vertexes and centroids of the two contact elements

\({{\varvec{u}}_0}\) :

Initial velocity of the sliding block

\({{\varvec{s}}_0}\) :

Initial displacement of the sliding block

\(g\) :

Gravity acceleration

\(\theta\) :

Angle of the inclined plane

\(\mu\) :

Friction coefficient

\(t\) :

Time

\({V_{\text{w}}}\) :

Wave velocity

\(E\) :

Elastic modulus

\(\rho\) :

Density of the block

\({\varvec{F}}\) :

Normal contact force between the blocks in impact simulation of a pillar

\(\Delta \varvec{\delta}\) :

Relative displacement between the contact blocks in impact simulation of a pillar

\(\xi\) :

Dam** radio

References

  • Albusaidi A, Hazzard JF, Young RP (2005) Distinct element modeling of hydraulically fractured Lac du Bonnet granite. J Geophys Res Solid Earth 110:B06032

    Google Scholar 

  • Bao H, Zhao Z (2012) The vertex-to-vertex contact analysis in the two-dimensional discontinuous deformation analysis. Adv Eng Softw 45:1–10

    Article  Google Scholar 

  • Boon CW, Houlsby GT, Utili S (2014) New insights into the 1963 Vajont slide using 2D and 3D distinct-element method analyses. Geotechnique 64:800–816

    Article  Google Scholar 

  • Boon CW, Houlsby GT, Utili S (2015) A new rock slicing method based on linear programming. Comput Geotech 65:12–29

    Article  Google Scholar 

  • Cai Y, He T, Wang R (2000) Numerical simulation of dynamic process of the Tangshan earthquake by a new method—LDDA. Pure Appl Geophys 157:2083–2104

    Article  Google Scholar 

  • Cundall PA (1971) A computer model for simulating progressive, large-scale movements in blocky rock systems. In: Proceedings of symposium of international society of rock mechanics, Nancy, France, pp II-8

  • Cundall PA (1988) Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int J Rock Mech Min Sci Geomech Abstr 25:107–116

    Article  Google Scholar 

  • Cundall PA, Hart RD (1985) Development of generalized 2-D and 3-D distinct element programs for modeling jointed rock. Itasca Consulting Group Misc. Paper SL-85-1. U.S. Army Corps of Engineering, Vicksburg

  • Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–65

    Article  Google Scholar 

  • Feng YT, Han K, Owen DRJ (2012) Energy-conserving contact interaction models for arbitrarily shaped discrete elements. Comput Methods Appl Mech Eng 205:169–177

    Article  Google Scholar 

  • Garcia X, Latham J, ** sphere algorithm to represent real particles in discrete element modelling. Geotechnique 59:779–784

    Article  Google Scholar 

  • Hart R, Cundall PA, Lemos J (1988) Formulation of a three-dimensional distinct element model—Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. Int J Rock Mech Min Sci Geomech Abstr 25:117–125

    Article  Google Scholar 

  • He L, An X, Ma G, Zhao Z (2013) Development of three-dimensional numerical manifold method for jointed rock slope stability analysis. Int J Rock Mech Min Sci 64:22–35

    Article  Google Scholar 

  • Hohner D, Wirtz S, Kruggelemden H, Scherer V (2011) Comparison of the multi-sphere and polyhedral approach to simulate non-spherical particles within the discrete element method: influence on temporal force evolution for multiple contacts. Powder Technol 208:643–656

    Article  Google Scholar 

  • Ikegawa Y, Hudson JA (1992) Novel automatic identification system for three dimensional multi-block systems. Eng Comput 9:169–179

    Article  Google Scholar 

  • Itasca (2014a) PFC. 2D (Particle flow code in 2 dimensions), 5.0 edn. Itasca Consulting Group, Minneapolis

    Google Scholar 

  • Itasca (2014b) PFC. 3D (Particle flow code in 3 dimensions), 5.0 edn. Itasca Consulting Group, Minneapolis

    Google Scholar 

  • Itasca (2016a) 3DEC-3-D distinct element code, 6.0 edn. Itasca Consulting Group, Minneapolis

    Google Scholar 

  • Itasca (2016b) UDEC-universal distinct element code, 6.0. edn. Itasca Consulting Group, Minneapolis

    Google Scholar 

  • Jiang Q, Zhou C, Li D (2009) A three-dimensional numerical manifold method based on tetrahedral meshes. Comput Struct 87:880–889

    Article  Google Scholar 

  • Jiang M, Shen Z, Wang J (2015) A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances. Comput Geotech 65:147–163

    Article  Google Scholar 

  • ** F, Zhang C, Hu W, Wang J (2011) 3D mode discrete element method: elastic model. Int J Rock Mech Min Sci 48:59–66

    Article  Google Scholar 

  • **g L (2000) Block system construction for three-dimensional discrete element models of fractured rocks. Int J Rock Mech Min Sci 37:645–659

    Article  Google Scholar 

  • **g L (2003) A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int J Rock Mech Min Sci 40:283–353

    Article  Google Scholar 

  • Jung JW, Santamarina JC, Soga K (2012) Stress-strain response of hydrate-bearing sands: numerical study using discrete element method simulations. J Geophys Res Solid Earth 117:B04202

    Google Scholar 

  • Kawamoto R, Ando E, Viggiani G, Andrade JE (2016) Level set discrete element method for three-dimensional computations with triaxial case study. J Mech Phys Solids 91:1–13

    Article  Google Scholar 

  • Kodam M, Bharadwaj R, Curtis JS, Hancock BC, Wassgren C (2010a) Cylindrical object contact detection for use in discrete element method simulations. Part I—Contact detection algorithms. Chem Eng Sci 65:5852–5862

    Article  Google Scholar 

  • Kodam M, Bharadwaj R, Curtis JS, Hancock BC, Wassgren C (2010b) Cylindrical object contact detection for use in discrete element method simulations, Part II—Experimental validation. Chem Eng Sci 65:5863–5871

    Article  Google Scholar 

  • Latham JP, Munjiza A (2004) The modelling of particle systems with real shapes. Philos Trans R Soc A 362:1953–1972

    Article  Google Scholar 

  • Li X, Zheng H (2015) Condensed form of complementarity formulation for discontinuous deformation analysis. Sci China Technol Sci 58:1509–1519

    Article  Google Scholar 

  • Li S, Zhao M, Wang Y, Rao Y (2004) A new numerical method for DEM-block and particle model. Int J Rock Mech Min Sci 41:414–418

    Article  Google Scholar 

  • Li SH, Wang J, Liu B, Dong DP (2007) Analysis of critical excavation depth for a jointed rock slope using a face-to-face discrete element method. Rock Mech Rock Eng 40:331–348

    Article  Google Scholar 

  • Lin CT, Amadei B, Jung J, Dwyer JF (1996) Extensions of discontinuous deformation analysis for jointed rock masses. Int J Rock Mech Min Sci Geomech Abstr 33:671–694

    Article  Google Scholar 

  • Lu G, Third JR, Muller CR (2015) Discrete element models for non-spherical particle systems: from theoretical developments to applications. Chem Eng Sci 127:425–465

    Article  Google Scholar 

  • Mahabadi OK, Grasselli G, Munjiza A (2010) Y-GUI: a graphical user interface and pre-processor for the combined finite-discrete element code, Y2D, incorporating material heterogeneity. Comput Geosci 36:241–252

    Article  Google Scholar 

  • Mahabadi OK, Lisjak A, Munjiza A, Grasselli G (2012) Y-Geo: new combined finite-discrete element numerical code for geomechanical applications. Int J Geomech 12:676–688

    Article  Google Scholar 

  • Mcdowell GR, Harireche O (2002) Discrete element modelling of soil particle fracture. Geotechnique 52:131–135

    Article  Google Scholar 

  • Morgan WE, Aral MM (2015) An implicitly coupled hydro-geomechanical model for hydraulic fracture simulation with the discontinuous deformation analysis. Int J Rock Mech Min Sci 73:82–94

    Article  Google Scholar 

  • Munjiza A (2004) The Combined finite-discrete element method. Wiley, Chichester

    Book  Google Scholar 

  • Munjiza A, Andrews KRF (1998) NBS contact detection algorithm for bodies of similar size. Int J Numer Methods Eng 43:131–149

    Article  Google Scholar 

  • Munjiza A, John NWM (2002) Mesh size sensitivity of the combined FEM/DEM fracture and fragmentation algorithms. Eng Fract Mech 69:281–295

    Article  Google Scholar 

  • Munjiza A, Owen DRJ, Bicanic N (1995) A combined finite-discrete element method in transient dynamics of fracturing solids. Eng Comput 12:145–174

    Article  Google Scholar 

  • Munjiza A, Bangash T, John NWM (2004) The combined finite-discrete element method for structural failure and collapse. Eng Fract Mech 71:469–483

    Article  Google Scholar 

  • Munjiza A, Rougier E, John NWM (2006) MR linear contact detection algorithm. Int J Numer Methods Eng 66:46–71

    Article  Google Scholar 

  • Nezami EG, Hashash YMA, Zhao D, Ghaboussi J (2004) A fast contact detection algorithm for 3-D discrete element method. Comput Geotech 31:575–587

    Article  Google Scholar 

  • Nezami EG, Hashash YMA, Zhao D, Ghaboussi J (2006) Shortest link method for contact detection in discrete element method. Int J Numer Anal Methods Geomech 30:783–801

    Article  Google Scholar 

  • Nie W, Zhao ZY, Ning Y, Sun JP (2014) Development of rock bolt elements in two-dimensional discontinuous deformation analysis. Rock Mech Rock Eng 47:2157–2170

    Article  Google Scholar 

  • Ning Y, An X, Ma G (2011) Footwall slope stability analysis with the numerical manifold method. Int J Rock Mech Min Sci 48:964–975

    Article  Google Scholar 

  • Rougier E, Bradley CR, Broom ST, Knight EE, Munjiza A, Sussman AJ, Swift RP (2011) The combined finite-discrete element method applied to the study of rock fracturing behavior in 3D. In: American Rock Mechanics Association 45th U.S. rock mechanics/geomechanics symposium, San Francisco, USA, 26–29 June. No. ARMA 11-517

  • Shi GH (1991) Manifold method of material analysis. In: Transaction of the 9th army conference on applied mathematics and computing, Minneapolis, Minnesota, US Army Research Office, pp 57–76

  • Shi GH (2001) Three-dimensional discontinuous deformation analysis. In: Proceedings of the forth international conference on analysis of discontinuous deformation Glasgow, Scotland, UK, 6–8 June, pp 1–21

  • Shi GH, Goodman RE (1985) Two dimensional discontinuous deformation analysis. Int J Numer Anal Methods Geomech 9:541–556

    Article  Google Scholar 

  • Shimizu H, Murata S, Ishida T (2011) The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution. Int J Rock Mech Min Sci 48:712–727

    Article  Google Scholar 

  • Smeets B, Odenthal T, Vanmaercke S, Ramon H (2015) Polygon-based contact description for modeling arbitrary polyhedra in the discrete element method. Comput Methods Appl Mech Eng 290:277–289

    Article  Google Scholar 

  • Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear and non-linear analyses of heterogeneous solids. Int J Numer Methods Eng 58:1321–1346

    Article  Google Scholar 

  • Wang J, Yan H (2013) On the role of particle breakage in the shear failure behavior of granular soils by DEM. Int J Numer Anal Methods Geomech 37:832–854

    Article  Google Scholar 

  • Yan CZ, Zheng H (2017) A new potential function for the calculation of contact forces in the combined finite–discrete element method. Int J Numer Anal Methods Geomech 41:265–283

    Article  Google Scholar 

  • Yan CZ, Zheng H, Ge XR (2015) Unified calibration based potential contact force in discrete element method. Rock Soil Mechanics 36:249–256 (in Chinese)

    Google Scholar 

  • Yeung MR, Jiang Q, Sun N (2003) Validation of block theory and three-dimensional discontinuous deformation analysis as wedge stability analysis methods. Int J Rock Mech Min Sci 40:265–275

    Article  Google Scholar 

  • Yeung MR, Jiang Q, Sun N (2007) A model of edge-to-edge contact for three-dimensional discontinuous deformation analysis. Comput Geotech 34:175–186

    Article  Google Scholar 

  • Yoon JS, Zang A, Stephansson O (2014) Numerical investigation on optimized stimulation of intact and naturally fractured deep geothermal reservoirs using hydro-mechanical coupled discrete particles joints model. Geothermics 52:165–184

    Article  Google Scholar 

  • Yu Q, Ohnishi Y, Xue G, Chen D (2009) A generalized procedure to identify three dimensional rock blocks around complex excavations. Int J Numer Anal Methods Geomech 33:355–375

    Article  Google Scholar 

  • Zhang Y, Xu Q, Chen G, Zhao JX, Zheng L (2014) Extension of discontinuous deformation analysis and application in cohesive-frictional slope analysis. Int J Rock Mech Min Sci 70:533–545

    Article  Google Scholar 

  • Zheng H, Jiang W (2009) Discontinuous deformation analysis based on complementary theory. Sci China Technol Sci 52:2547–2554

    Article  Google Scholar 

  • Zheng H, Li X (2015) Mixed linear complementarity formulation of discontinuous deformation analysis. Int J Rock Mech Min Sci 75:23–32

    Article  Google Scholar 

  • Zheng H, Xu D (2014) New strategies for some issues of numerical manifold method in simulation of crack propagation. Int J Numer Methods Eng 97:986–1010

    Article  Google Scholar 

  • Zheng H, Zhang P, Du X (2016) Dual form of discontinuous deformation analysis Computer. Methods Appl Mech Eng 305:196–216

    Article  Google Scholar 

  • Zhou B, Huang R, Wang H, Wang J (2013) DEM investigation of particle anti-rotation effects on the micromechanical response of granular materials. Granul Matter 15:315–326

    Article  Google Scholar 

  • Zhu JB, Deng X, Zhao XB, Zhao J (2013) A numerical study on wave transmission across multiple intersecting joint sets in rock masses with UDEC. Rock Mech Rock Eng 46:1429–1442

    Article  Google Scholar 

  • Zhu H, Wu W, Chen J, Ma G, Liu X, Zhuang X (2016) Integration of three dimensional discontinuous deformation analysis (DDA) with binocular photogrammetry for stability analysis of tunnels in blocky rockmass. Tunn Undergr Space Technol 51:30–40

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant no. 51279050), the 15th Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (Grant no. 151073), the National Key R&D Program of China (Grant no. 2016YFC0401601), the project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant YS11001), and the 111 Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanhao Zhao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Liu, X., Mao, J. et al. A Novel Contact Algorithm Based on a Distance Potential Function for the 3D Discrete-Element Method. Rock Mech Rock Eng 51, 3737–3769 (2018). https://doi.org/10.1007/s00603-018-1556-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1556-4

Keywords

Navigation