Log in

Active Seismic Monitoring of Crack Initiation, Propagation, and Coalescence in Rock

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Active seismic monitoring was used to detect and characterize crack initiation, crack propagation and crack coalescence in pre-cracked rock specimens. Uniaxial compression tests were conducted on Indiana limestone specimens with two parallel pre-existing cracks. During the experiments, the mechanically induced cracks around the flaw tips were monitored by measuring surface displacements using digital image correlation (DIC). Transmitted and reflected compressional and shear waves through the specimens were also recorded during the loading to detect any damage or cracking phenomena. The amplitude of transmitted compressional and shear waves decreased with uniaxial compression. However, the rate of decrease of the amplitude of the transmitted waves intensified well before the initiation of tensile cracks. In addition, a distinct minimum in the amplitude of transmitted waves occurred close to coalescence. The normalized amplitude of waves reflecting from the new cracks increased before new tensile and shear cracks initiated around the flaw tips. In addition, the location of new cracks could be identified using the traveling time of the reflected waves. The experimental results indicate that changes in normalized amplitude of transmitted and reflected signals associated with crack initiation and crack coalescence were detected much earlier than with DIC, at a load of about 80–90% of the load at which the cracks appeared on the surface. The tests show conclusively that active wave monitoring is an effective tool to detect damage and new cracks in rock, as well as to estimate the location of the new cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ashby MF, Hallam (Née Cooksley) SD (1986) The failure of brittle solids containing small cracks under compressive stress states. Acta Metall 34:497–510. doi:10.1016/0001-6160(86)90086-6

    Article  Google Scholar 

  • Backers T, Stanchits S, Dresen G (2005) Tensile fracture propagation and acoustic emission activity in sandstone: the effect of loading rate. Int J Rock Mech Min Sci 42:1094–1101. doi:10.1016/j.ijrmms.2005.05.011

    Article  Google Scholar 

  • Boadu FK (1997) Fractured rock mass characterization parameters and seismic properties: analytical studies. J Appl Geophys 37:1–19. doi:10.1016/S0926-9851(97)00008-6

    Article  Google Scholar 

  • Bobet A (1997) Fracture coalescence in rock materials: experimental observations and numerical predictions. Dissretation, Massachussets Institute of Technology

  • Bobet A, Einstein HH (1998) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35:863–888. doi:10.1016/S0148-9062(98)00005-9

    Article  Google Scholar 

  • Byerlee J (1978) A review of rock mechanics studies in the United States pertinent to earthquake prediction. Pure Appl Geophys PAGEOPH 116:586–602. doi:10.1007/BF00876526

    Article  Google Scholar 

  • Camones LAM, Vargas EDA, de Figueiredo RP, Velloso RQ (2013) Application of the discrete element method for modeling of rock crack propagation and coalescence in the step-path failure mechanism. Eng Geol 153:80–94. doi:10.1016/j.enggeo.2012.11.013

    Article  Google Scholar 

  • Cao P, Liu T, Pu C, Lin H (2015) Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression. Eng Geol 187:113–121. doi:10.1016/j.enggeo.2014.12.010

    Article  Google Scholar 

  • Chen W-Y, Lovell CW, Haley GM, Pyrak-Nolte LJ (1993a) Variation of shear-wave amplitude during frictional sliding. Int J Rock Mech Min Sci Geomech Abstr 30:779–784. doi:10.1016/0148-9062(93)90022-6

    Article  Google Scholar 

  • Chen G, Kemeny J, Harpalani S (1993b) Fracture propagation and coalescence in marble plates with pre-cut notches under compression. Int J Rock Mech Min Sci 30:279

    Article  Google Scholar 

  • Chu TC, Ranson WF, Sutton MA (1985) Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech 25:232–244. doi:10.1007/BF02325092

    Article  Google Scholar 

  • Couvreur JF, Thimus JF (1996) The properties of coupling agents in improving ultrasonic transmission. Int J Rock Mech Min Sci 33:417–424

    Article  Google Scholar 

  • Dyskin A, Sahouryeh E, Jewell R et al (2003) Influence of shape and locations of initial 3-D cracks on their growth in uniaxial compression. Eng Fract Mech 70:2115–2136. doi:10.1016/S0013-7944(02)00240-0

    Article  Google Scholar 

  • Eberhardt E, Stead D, Stimpson B, Read RS (1998) Identifying crack initiation and propagation thresholds in brittle rock. Can Geotech J 35:222–233. doi:10.1139/cgj-35-2-222

    Article  Google Scholar 

  • Germanovich LN, Salganik RL, Dyskin AV, Lee KK (1994) Mechanisms of brittle fracture of rock with pre-existing cracks in compression. Pure Appl Geophys PAGEOPH 143:117–149. doi:10.1007/BF00874326

    Article  Google Scholar 

  • Hedayat A, Pyrak-Nolte LJ, Bobet A (2014) Detection and quantification of slip along non-uniform frictional discontinuities using digital image correlation. Geotech Test J 37:20130141. doi:10.1520/GTJ20130141

    Article  Google Scholar 

  • Hoek E, Martin CD (2014) Fracture initiation and propagation in intact rock—A review. J Rock Mech Geotech Eng 6:287–300. doi:10.1016/j.jrmge.2014.06.001

    Article  Google Scholar 

  • Horii H, Nemat-Nasser S (1985) Compression-induced microcrack growth in brittle solids: axial splitting and shear failure. J Geophys Res 90:3105. doi:10.1029/JB090iB04p03105

    Article  Google Scholar 

  • Hu S, Lu J, **ao F (2013) Evaluation of concrete fracture procedure based on acoustic emission parameters. Constr Build Mater 47:1249–1256. doi:10.1016/j.conbuildmat.2013.06.034

    Article  Google Scholar 

  • Ingraffea AR, Heuze FE (1980) Finite element models for rock fracture mechanics. Int J Numer Anal Methods Geomech 4:25–43. doi:10.1002/nag.1610040103

    Article  Google Scholar 

  • Janssen C, Wagner F, Zang A, Dresen G (2001) Fracture process zone in granite: a microstructural analysis. Int J Earth Sci 90:46–59. doi:10.1007/s005310000157

    Article  Google Scholar 

  • Jiefan H, Ganglin C, Yonghong Z, Ren W (1990) An experimental study of the strain field development prior to failure of a marble plate under compression. Tectonophysics 175:269–284. doi:10.1016/0040-1951(90)90142-U

    Article  Google Scholar 

  • Kahraman S (2002) The effects of fracture roughness on P-wave velocity. Eng Geol 63:347–350. doi:10.1016/S0013-7952(01)00089-8

    Article  Google Scholar 

  • Ko TY, Einstein HH, Kemeny JM (2006) Crack coalescence in brittle material under cyclic loading. In: The 41st U.S. symposium on rock mechanics (USRMS)

  • Lajtai EZ, Carter BJ, Ayari ML (1990) Criteria for brittle fracture in compression. Eng Fract Mech 37:59–74. doi:10.1016/0013-7944(90)90331-A

    Article  Google Scholar 

  • Leplay P, Réthoré J, Meille S, Baietto M-C (2011) Identification of damage and cracking behaviours based on energy dissipation mode analysis in a quasi-brittle material using digital image correlation. Int J Fract 171:35–50. doi:10.1007/s10704-011-9624-8

    Article  Google Scholar 

  • Leucci G, De Giorgi L (2006) Experimental studies on the effects of fracture on the P and S wave velocity propagation in sedimentary rock (“Calcarenite del Salento”). Eng Geol 84:130–142. doi:10.1016/j.enggeo.2005.12.004

    Article  Google Scholar 

  • Li Y-P, Chen L-Z, Wang Y-H (2005) Experimental research on pre-cracked marble under compression. Int J Solids Struct 42:2505–2516. doi:10.1016/j.ijsolstr.2004.09.033

    Article  Google Scholar 

  • Lin Q, Labuz JF (2013) Fracture of sandstone characterized by digital image correlation. Int J Rock Mech Min Sci 60:235–245. doi:10.1016/j.ijrmms.2012.12.043

    Google Scholar 

  • Lin Q, Fakhimi A, Haggerty M, Labuz JF (2009) Initiation of tensile and mixed-mode fracture in sandstone. Int J Rock Mech Min Sci 46:489–497. doi:10.1016/j.ijrmms.2008.10.008

    Article  Google Scholar 

  • Lin Q, Yuan H, Biolzi L, Labuz JF (2014) Opening and mixed mode fracture processes in a quasi-brittle material via digital imaging. Eng Fract Mech 131:176–193. doi:10.1016/j.engfracmech.2014.07.028

    Article  Google Scholar 

  • Lockner D (1993) The role of acoustic emission in the study of rock fracture. Int J Rock Mech Min Sci Geomech Abstr 30:883–899. doi:10.1016/0148-9062(93)90041-B

    Article  Google Scholar 

  • Martinez AR (1999) Fracture coalescence in natural rocks. Massachusetts Institute of Technology, Department of Civil and Environmental Engineering

  • Moradian Z, Einstein H (2014) Monitoring cracking process of gypsum by means of acoustic emission and high speed camera imaging. In: 48th U.S. rock mechanics/geomechanics symposium

  • Nakagawa S, Nihei KTT, Myer LRR (2000) Shear-induced conversion of seismic waves across single fractures. Int J Rock Mech Min Sci 37:203–218. doi:10.1016/S1365-1609(99)00101-X

    Article  Google Scholar 

  • Nguyen TL, Hall SA, Vacher P, Viggiani G (2011) Fracture mechanisms in soft rock: identification and quantification of evolving displacement discontinuities by extended digital image correlation. Tectonophysics 503:117–128. doi:10.1016/j.tecto.2010.09.024

    Article  Google Scholar 

  • Orteu J-J (2009) 3-D computer vision in experimental mechanics. Opt Lasers Eng 47:282–291. doi:10.1016/j.optlaseng.2007.11.009

    Article  Google Scholar 

  • Otsuka K, Date H (2000) Fracture process zone in concrete tension specimen. Eng Fract Mech 65:111–131. doi:10.1016/S0013-7944(99)00111-3

    Article  Google Scholar 

  • Pan B, Asundi A, **e H, Gao J (2009a) Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements. Opt Lasers Eng 47:865–874. doi:10.1016/j.optlaseng.2008.10.014

    Article  Google Scholar 

  • Pan B, Qian K, **e H, Asundi A (2009b) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20:062001. doi:10.1088/0957-0233/20/6/062001

    Article  Google Scholar 

  • Park CH, Bobet A (2009) Crack coalescence in specimens with open and closed flaws: a comparison. Int J Rock Mech Min Sci 46:819–829. doi:10.1016/j.ijrmms.2009.02.006

    Article  Google Scholar 

  • Petit J-P, Barquins M (1988) Can natural faults propagate under Mode II conditions? Tectonics 7:1243–1256. doi:10.1029/TC007i006p01243

    Article  Google Scholar 

  • Pyrak-Nolte LJ (1996) The seismic response of fractures and the interrelations among fracture properties. Int J Rock Mech Min Sci Geomech Abstr 33(8):787–802 8:787–802

  • Pyrak-Nolte LJ, Myer LR, Cook NGW (1990) Transmission of seismic waves across single natural fractures. J Geophys Res 95:8617. doi:10.1029/JB095iB06p08617

    Article  Google Scholar 

  • Reyes O (Oak RNL. T (USA)), Einstein HH (Massachusetts I of T. CM (USA)) (1991) Failure mechanisms of fractured rock: a fracture coalescence model. In: 7th ISRM congress

  • Roux S, Réthoré J, Hild F (2009) Digital image correlation and fracture: an advanced technique for estimating stress intensity factors of 2D and 3D cracks. J Phys D Appl Phys 42:214004. doi:10.1088/0022-3727/42/21/214004

    Article  Google Scholar 

  • Sagong M, Bobet A (2002) Coalescence of multiple flaws in a rock-model material in uniaxial compression. Int J Rock Mech Min Sci 39:229–241. doi:10.1016/S1365-1609(02)00027-8

    Article  Google Scholar 

  • Shao S, Pyrak-Nolte LJ (2013) Interface waves along fractures in anisotropic media. Geophysics 78:T99–T112. doi:10.1190/geo2012-0464.1

    Article  Google Scholar 

  • Shen B (1995) The mechanism of fracture coalescence in compression—experimental study and numerical simulation. Eng Fract Mech 51:73–85. doi:10.1016/0013-7944(94)00201-R

    Article  Google Scholar 

  • Shen B, Paulino GH (2011) Identification of cohesive zone model and elastic parameters of fiber-reinforced cementitious composites using digital image correlation and a hybrid inverse technique. Cement Concr Compos 33:572–585. doi:10.1016/j.cemconcomp.2011.01.005

    Article  Google Scholar 

  • Shen B, Stephansson O, Einstein HH, Ghahreman B (1995) Coalescence of fractures under shear stresses in experiments. J Geophys Res Solid Earth 100:5975–5990. doi:10.1029/95JB00040

    Article  Google Scholar 

  • Sutton MA, Orteu JJ, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New York

    Google Scholar 

  • White DJ, Take WA, Bolton MD (2003) Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Géotechnique 53:619–631. doi:10.1680/geot.2003.53.7.619

    Article  Google Scholar 

  • Wong RHC, Chau KT (1998) Crack coalescence in a rock-like material containing two cracks. Int J Rock Mech Min Sci 35:147–164. doi:10.1016/S0148-9062(97)00303-3

    Article  Google Scholar 

  • Wong L, Einstein H (2006) Fracturing behavior of prismatic specimens containing single flaws. In: The 41st U.S. symposium on rock mechanics (USRMS)

  • Wong LNY, Einstein HH (2007) Coalescence behavior in carrara marble and molded gypsum containing artificial flaw pairs under uniaxial compression. In: 1st Canada—U.S. rock mechanics symposium

  • Wong LNY, Einstein HH (2009a) Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression. Int J Rock Mech Min Sci 46:239–249. doi:10.1016/j.ijrmms.2008.03.006

    Article  Google Scholar 

  • Wong LNY, Einstein HH (2009b) Crack coalescence in molded gypsum and carrara marble: Part 1. Macroscopic observations and interpretation. Rock Mech Rock Eng 42:475–511. doi:10.1007/s00603-008-0002-4

    Article  Google Scholar 

  • Wong RH, Chau K, Tang C, Lin P (2001) Analysis of crack coalescence in rock-like materials containing three flaws—Part I: experimental approach. Int J Rock Mech Min Sci 38:909–924. doi:10.1016/S1365-1609(01)00064-8

    Article  Google Scholar 

  • Yang S-Q, **g H-W (2010) Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression. Int J Fract 168:227–250. doi:10.1007/s10704-010-9576-4

    Article  Google Scholar 

  • Zietlow W, Labuz J (1998) Measurement of the intrinsic process zone in rock using acoustic emission. Int J Rock Mech Min Sci 35:291–299. doi:10.1016/S0148-9062(97)00323-9

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by the National Science Foundation, Geomechanics and Geotechnical Systems Program, with Award Number CMMI-1162082. The authors are grateful for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anahita Modiriasari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modiriasari, A., Bobet, A. & Pyrak-Nolte, L.J. Active Seismic Monitoring of Crack Initiation, Propagation, and Coalescence in Rock. Rock Mech Rock Eng 50, 2311–2325 (2017). https://doi.org/10.1007/s00603-017-1235-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-017-1235-x

Keywords

Navigation