Log in

An Anisotropic Strength Model for Layered Rocks Considering Planes of Weakness

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

β :

Inclination angle between planes of weakness and the major principal stress

V R :

Volume of layered rock

V m :

Volume of matrix

V f :

Volume of weakness planes

\( c_{{{\text{R}}\left( \beta \right)}} \), \( \phi_{{{\text{R}}\left( \beta \right)}} \) :

Cohesion and internal friction angle of layered rock at angle β

\( c_{\text{m}} \), \( \phi_{\text{m}} \) :

Cohesion and friction angle of matrix

\( c_{f} \), \( \phi_{f} \) :

Cohesion and friction angle of weakness plane

\( \mu_{{{\text{R}}\left( \beta \right)}} \) :

Friction coefficient (\( \tan \phi_{\text{R}} \)) of layered rock at angle β

\( r_{f\left( \beta \right)} \) :

Strength reduction coefficient of anisotropic planes at angle β

\( \sigma_{{{\text{c}}\left( \beta \right)}} \) :

Uniaxial compressive strength of layered rock at angle β

ρ :

Inclination angle of minimum shear strength

γ, δ :

Inclination angle of minimum cohesion and friction angle

R c :

Degree of anisotropy

a, b, c 1,2, ϕ 1,2, b’s, d’s, \( \hat{c} \), \( \hat{\mu } \) :

Constants

R 2 :

Regression R-squared value

\( \eta_{R}^{\exp } \), \( \eta_{R}^{{p{\text{red}}}} \) :

Experimental and predicted values of anisotropic strength

\( \sigma_{1,\exp } \), \( \sigma_{{1,{\text{pred}}}} \) :

Experimental and predicted values of major principal stress at failure

\( \eta_{R}^{\text{av}} \) :

Average of the experimental results

N :

Total number of experimental data points

AAREP:

Average absolute relative error percentage

\( n_{i} \) and \( n_{j} \) :

Unit normals

\( \varOmega_{ij}^{c} \), \( \varOmega_{ij}^{\mu } \) :

Symmetric second-order traceless tensors

\( V_{\text{p}} \) :

P-wave velocity

α :

P-wave velocity propagating perpendicular to the weakness plane

ζ :

Fifth Thomsen parameter

β 0 :

Shift angle

References

  • Ali E, Wu G, Zhao Z, Jiang W (2014) Assessments of strength anisotropy and deformation behavior of banded amphibolite rocks. Geotech Geol Eng 32(2):429–438

    Article  Google Scholar 

  • Attewell PB, Sandford MR (1974) Intrinsic shear strength of a brittle, anisotropic rock—I: experimental and mechanical interpretation. Int J Rock Mech Min Sci Geomech Abstr 11(11):423–430

    Article  Google Scholar 

  • Azami A, Pietruszczak S, Guo P (2010) Bearing capacity of shallow foundations in transversely isotropic granular media. Int J Numer Anal Met 34(8):771–793

    Article  Google Scholar 

  • Chen CS, Hsu SC (2001) Measurement of indirect tensile strength of anisotropic rocks by the ring test. Rock Mech Rock Eng 34(4):293–321

    Article  Google Scholar 

  • Colak K, Unlu T (2004) Effect of transverse anisotropy on the Hoek-Brown strength parameter ‘mi’ for intact rocks. Int J Rock Mech Min 41(6):1045–1052

    Article  Google Scholar 

  • Gonidec YL, Schubnel A, Wassermann J, Gibert D (2012) Field-scale acoustic investigation of a damaged anisotropic shale during a gallery excavation. Int J Rock Mech Min 51(4):136–148

    Article  Google Scholar 

  • Hoek E, Brown ET (1980) Underground excavations in rock. Institution of Mining Metallurgy, London

    Google Scholar 

  • Ismael MA, Imam HF, El-Shayeb Y (2014) A simplified approach to directly consider intact rock anisotropy in Hoek-Brown failure criterion. J Rock Mech Geotech Eng 6(5):486–492

    Article  Google Scholar 

  • Jaeger JC (1960) Shear failure of anistropic rocks. Geol Mag 97(1):65–72

    Article  Google Scholar 

  • Lee Y, Pietruszczak S (2008) Application of critical plane approach to the prediction of strength anisotropy in transversely isotropic rock masses. Int J Rock Mech Min 45(4):513–523

    Article  Google Scholar 

  • Najibi AR, Ghafoori M, Lashkaripour GR, Asef MR (2014) Empirical relations between strength and static and dynamic elastic properties of Asmari and Sarvak limestones, two main oil reservoirs in Iran. J Petrol Sci Eng 126:78–82

    Article  Google Scholar 

  • Pietruszczak S, Mroz Z (2001) On failure criteria for anisotropic cohesive-frictional materials. Int J Numer Anal Meth Geomech 25(5):509–524

    Article  Google Scholar 

  • Pietruszczak S, Lydzba D, Shao J (2002) Modelling of inherent anisotropy in sedimentary rocks. Int J Solids Struct 39(3):637–648

    Article  Google Scholar 

  • Saroglou H, Tsiambaos G (2008) A modified Hoek-Brown failure criterion for anisotropic intact rock. Int J Rock Mech Min 45(2):223–234

    Article  Google Scholar 

  • Shen J, Jimenez R, Karakus M, Xu C (2014) A simplified failure criterion for intact rocks based on rock type and uniaxial compressive strength. Rock Mech Rock Eng 47(2):357–369

    Article  Google Scholar 

  • Shi XC, Meng YF, Li G, Li JX, Tao ZW, Wei SD (2015) Confined compressive strength model of rock for drilling optimization. Petroleum 1(1):40–45

    Article  Google Scholar 

  • Singh VK, Singh D, Singh TN (2001) Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural networks. Int J Rock Mech Min 38(2):269–284

    Article  Google Scholar 

  • Singh M, Samadhiya NK, Kumar A, Kumar V, Singh B (2015) A nonlinear criterion for triaxial strength of inherently anisotropic rocks. Rock Mech Rock Eng 48(4):1387–1405

    Article  Google Scholar 

  • Thomsen L (1986) Weak elastic anisotropy. Geophysics 51(10):1954–1966

    Article  Google Scholar 

  • Tien YM, Kuo MC (2001) A failure criterion for transversely isotropic rocks. Int J Rock Mech Min 38(3):399–412

    Article  Google Scholar 

  • Ushaksaraei R, Pietruszczak S (2002) Failure criterion for structural masonry based on critical plane approach. J Eng Mech 128(7):769–778

    Article  Google Scholar 

  • Wong LNY, Einstein HH (2009) Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression. Int J Rock Mech Min 46(2):239–249

    Article  Google Scholar 

  • Zhang YJ, Yang CS, Ju XD (2014) A method for determining cohesion and internal friction angle of dual-pore-fracture medium and the relative fem analyses. Sci Sinica 44(2):182–188

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Youth Foundation of National Natural Science Foundation of China (No. 51504208) and the Scientific Fund of Sichuan Provincial Education Department (No. 14ZB0060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingfeng Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Yang, X., Meng, Y. et al. An Anisotropic Strength Model for Layered Rocks Considering Planes of Weakness. Rock Mech Rock Eng 49, 3783–3792 (2016). https://doi.org/10.1007/s00603-016-0985-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-016-0985-1

Keywords

Navigation