Log in

More About the Light Baryon Spectrum

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We discuss the light baryon spectrum obtained from a recent quark–diquark calculation, implementing non-pointlike diquarks that are self-consistently calculated from their Bethe–Salpeter equations. We examine the orbital angular momentum content in the baryons’ rest frame and highlight the fact that baryons carry all possible values of L compatible with their spin, without the restriction \(P=(-1)^L\) which is only valid nonrelativistically. We furthermore investigate the meaning of complex conjugate eigenvalues of Bethe–Salpeter equations, their possible connection with ‘anomalous’ states, and we propose a method to eliminate them from the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Klempt, J.M. Richard, Baryon spectroscopy. Rev. Mod. Phys. 82, 1095 (2010)

    Article  ADS  Google Scholar 

  2. L. Tiator, D. Drechsel, S.S. Kamalov, M. Vanderhaeghen, Electromagnetic excitation of nucleon resonances. Eur. Phys. J. Special Top. 198, 141 (2011)

    Article  ADS  Google Scholar 

  3. I.G. Aznauryan et al., Studies of nucleon resonance structure in exclusive meson electroproduction. Int. J. Mod. Phys. E 22, 1330015 (2013)

    Article  ADS  Google Scholar 

  4. V. Crede, W. Roberts, Progress towards understanding baryon resonances. Rep. Prog. Phys. 76, 076301 (2013)

    Article  ADS  Google Scholar 

  5. M. Gockeler et al., Scattering phases for meson and baryon resonances on general moving-frame lattices. Phys. Rev. D 86, 094513 (2012)

    Article  ADS  Google Scholar 

  6. D.J. Wilson et al., Coupled \(\pi \pi \), \(K K^-\) scattering in P-wave and the \(\rho \) resonance from lattice QCD. Phys. Rev. D 92(9), 094502 (2015)

    Article  ADS  Google Scholar 

  7. C.B. Lang, L. Leskovec, M. Padmanath, S. Prelovsek, Pion-nucleon scattering in the Roper channel from lattice QCD. ar**v:1610.01422 [hep-lat]

  8. J.J. Wu, H. Kamano, T.-S.H. Lee, D.B. Leinweber, A.W. Thomas, Nucleon resonance structure in the finite volume of lattice QCD. ar**v:1611.05970 [hep-lat]

  9. A. Bashir et al., Collective perspective on advances in Dyson-Schwinger Equation QCD. Commun. Theor. Phys. 58, 79 (2012)

    Article  MATH  Google Scholar 

  10. J. Segovia et al., Completing the picture of the Roper resonance. Phys. Rev. Lett. 115(17), 171801 (2015)

    Article  ADS  Google Scholar 

  11. G. Eichmann et al., Baryons as relativistic three-quark bound states. Prog. Part. Nucl. Phys. 91, 1 (2016)

    Article  ADS  Google Scholar 

  12. G. Eichmann, R. Alkofer, A. Krassnigg, D. Nicmorus, Nucleon mass from a covariant three-quark Faddeev equation. Phys. Rev. Lett. 104, 201601 (2010)

    Article  ADS  Google Scholar 

  13. M. Anselmino et al., Diquarks. Rev. Mod. Phys. 65, 1199 (1993)

    Article  ADS  Google Scholar 

  14. S.J. Brodsky, G.F. de Teramond, H.G. Dosch, J. Erlich, Light-Front Holographic QCD and Emerging Confinement. Phys. Rep. 584, 1 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. C. Patrignani et al., Review of Particle Physics. Chin. Phys. C 40(10), 100001 (2016). (PDG Collaboration)

    Article  ADS  Google Scholar 

  16. G. Eichmann, C.S. Fischer, H. Sanchis-Alepuz, On light baryons and their excitations. Phys. Rev. D 94, 094033 (2016)

    Article  ADS  Google Scholar 

  17. G. Eichmann, D. Nicmorus, Nucleon to Delta electromagnetic transition in the Dyson-Schwinger approach. Phys. Rev. D 85, 093004 (2012)

    Article  ADS  Google Scholar 

  18. M. Oettel, G. Hellstern, R. Alkofer, H. Reinhardt, Octet and decuplet baryons in a covariant and confining diquark-quark model. Phys. Rev. C 58, 2459 (1998)

    Article  ADS  Google Scholar 

  19. W.B. Kaufmann, Numerical solutions of the bethe-salpeter equation. Phys. Rev. 187, 2051 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  20. N. Seto, I. Fukui, Scalar scalar ladder model in the unequal mass case. 1: Numerical evidence for the complex eigenvalues. Prog. Theor. Phys. 89, 205 (1993)

    Article  ADS  Google Scholar 

  21. S. Ahlig, R. Alkofer, (In) consistencies in the relativistic description of excited states in the Bethe-Salpeter equation. Ann. Phys. 275, 113 (1999)

    Article  ADS  MATH  Google Scholar 

  22. E. Rojas, B. El-Bennich, J.P.B.C. de Melo, Exciting flavored bound states. Phys. Rev. D 90, 074025 (2014)

    Article  ADS  Google Scholar 

  23. B. El-Bennich, G. Krein, E. Rojas, F.E. Serna, Excited hadrons and the analytical structure of bound-state interaction kernels. Few Body Syst. 57(10), 955 (2016)

    Article  ADS  Google Scholar 

  24. T. Hilger, A. Krassnigg, Charming quasi-exotic open-flavor mesons. ar**v:1611.04334 [hep-ph]

  25. G.C. Wick, Properties of Bethe-Salpeter Wave Functions. Phys. Rev. 96, 1124 (1954)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. R.E. Cutkosky, Solutions of a Bethe-Salpeter equations. Phys. Rev. 96, 1135 (1954)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. N. Nakanishi, A General survey of the theory of the Bethe-Salpeter equation. Prog. Theor. Phys. Suppl. 43, 1 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. J. Bijtebier, Bethe-Salpeter equation: 3-D reductions, heavy mass limits and abnormal solutions. Nucl. Phys. A 623, 498 (1997)

    Article  ADS  Google Scholar 

  29. R. Alkofer, L. von Smekal, The Infrared behavior of QCD Green’s functions: Confinement dynamical symmetry breaking, and hadrons as relativistic bound states. Phys. Rep. 353, 281 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. M.S. Bhagwat et al., Schwinger functions and light-quark bound states. Few Body Syst. 40, 209 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Eichmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eichmann, G. More About the Light Baryon Spectrum. Few-Body Syst 58, 81 (2017). https://doi.org/10.1007/s00601-016-1200-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-016-1200-3

Navigation