Log in

Growth and photosynthetic responses of ectomycorrhizal pine seedlings exposed to elevated Cu in soils

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

It is still controversial whether ectomycorrhizal (ECM) mycelia filter out toxic metals in nutrient absorption of host trees. In this study, pine (Pinus densiflora) seedlings colonized by Cu-sensitive and Cu-tolerant ECM species were exposed to a wide spectrum of soil Cu concentrations to investigate functions of ECM fungi under Cu stress. The photosynthetic rates of intact needles were monitored in situ periodically. The biomass and elements of plants were also measured after harvest. The ameliorating effect of ECM infection on host plants exposed to toxic stress was metal concentration specific. Under lower-level Cu stress, ECM fungi increased seedling performance, while ECM seedlings accumulated more Cu than nonmycorrhizal (NM) seedlings. Under higher-level Cu stress, photosynthesis decreased well before visible symptoms of Cu toxicity appeared. The reduced photosynthesis and biomass in ECM seedlings compared to NM seedlings under higher Cu conditions were also accompanied by lower phosphorus in needles. There was no marked difference between the two fungal species. Our results indicate that the two ECM fungi studied in our system may not have an ability to selectively eliminate Cu in nutrient absorption and may not act as effective barriers that decrease toxic metal uptake into host plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

References

  • Adriaensen K, van der Lelie D, Van Laere A, Vangronsveld J, Colpaert JV (2004) A zinc-adapted fungus protects pines from zinc stress. New Phytol 161:549–555

    Article  CAS  Google Scholar 

  • Adriaensen K, Vralstad T, Noben JP, Vangronsveld J, Colpaert JV (2005) Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils. Appl Environ Microbiol 71:7279–7284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Adriaensen K, Vangronsveld J, Colpaert JV (2006) Zinc-tolerant Suillus bovinus improves growth of Zn-exposed Pinus sylvestris seedlings. Mycorrhiza 16:553–558

    Article  CAS  PubMed  Google Scholar 

  • Andrade SAL, Silveira APD, Jorge RA, de Abreu MF (2008) Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza. Int J Phytorem 10:1–13

    Article  Google Scholar 

  • Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254:173–181

    Article  CAS  PubMed  Google Scholar 

  • Bois G, Bigras FJ, Bertrand A, Piche Y, Fung MYP, Khasa DP (2006) Ectomycorrhizal fungi affect the physiological responses of Picea glauca and Pinus banksiana seedlings exposed to an NaCl gradient. Tree Physiol 26:1185–1196

    Article  PubMed  Google Scholar 

  • Bradley R, Burt AJ, Read DJ (1981) Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris. Nature 292:335–337

    Article  CAS  Google Scholar 

  • Bradley R, Burt AJ, Read DJ (1982) The biology of mycorrhiza in the Ricacacea. VIII. The role of mycorrhizal infection in heavy metal resistance. New Phytol 91:197–209

    Article  CAS  Google Scholar 

  • Brown MT, Wilkins DA (1985) Zinc tolerance of mycorrhizal Betula. New Phytol 99:101–106

    Article  CAS  Google Scholar 

  • Bucking H, Heyser W (1994) The effect of ectomycorrhizal fungi on Zn uptake and distribution in seedlings of Pinus sylvestris L. Plant Soil 167:203–212

    Article  Google Scholar 

  • Clint GM, Dighton J (1992) Uptake and accumulation of radiocesium by mycorrhizal and nonmycorrhizal heather plants. New Phytol 121:555–561

    Article  CAS  Google Scholar 

  • Colpaert JV, van Assche JA (1992) Zinc toxicity in ectomycorrhizal Pinus sylvestris. Plant Soil 143:201–211

    Article  CAS  Google Scholar 

  • Colpaert JV, van Assche JA (1993) The effects of cadmium on ectomycorrhizal Pinus sylvestris L. New Phytol 123:325–333

    Article  CAS  Google Scholar 

  • Colpaert JV, Wevers JHL, Krznaric E, Adriaensen K (2011) How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann For Sci 68:17–24

    Article  Google Scholar 

  • Denny HJ, Wilkins DA (1987) Zinc tolerance in Betula spp. 4. The mechanism of ectomycorrhizal amelioration of zinc toxicity. New Phytol 106:545–553

    CAS  Google Scholar 

  • Dixon RK (1988) Response of ectomycorrhizal Quercus rubra to soil cadmium, nickel and lead. Soil Biol Biochem 20:555–559

    Article  CAS  Google Scholar 

  • Dixon RK, Buschena CA (1988) Response of ectomycorrhizal Pinus banksiana and Picea glauca to heavy-metals in soil. Plant Soil 105:265–271

    Article  CAS  Google Scholar 

  • Estaun V, Calvet C, Pera J, Camprubi A, Parlade X (2007) Heavy metals and mycorrhizal symbiosis: phytoremediation strategies. Afinidad 64:167–170

    CAS  Google Scholar 

  • Frey B, Zierold K, Brunner I (2000) Extracellular complexation of Cd in the Hartig net and cytosolic Zn sequestration in the fungal mantle of Picea abies Hebeloma crustuliniforme ectomycorrhizas. Plant Cell Environ 23:1257–1265

    Article  CAS  Google Scholar 

  • Godbold DL, Jentschke G, Winter S, Marschner P (1998) Ectomycorrhizas and amelioration of metal stress in forest trees. Chemosphere 36:757–762

    Article  CAS  Google Scholar 

  • Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:8

    Article  Google Scholar 

  • Hartley-Whitaker J, Cairney JWG, Meharg AA (2000a) Sensitivity to Cd or Zn of host and symbiont of ectomycorrhizal Pinus sylvestris L. (Scots pine) seedlings. Plant Soil 218:31–42

    Article  CAS  Google Scholar 

  • Hartley-Whitaker J, Cairney JWG, Meharg AA (2000b) Toxic effects of cadmium and zinc on ectomycorrhizal colonization of Scots pine (Pinus sylvestris L.) from soil inoculum. Environ Toxicol Chem 19:694–699

    Article  CAS  Google Scholar 

  • Huang Y, Tao S (2004) Influences of excessive Cu on photosynthesis and growth in ectomycorrhizal Pinus sylvestris seedlings. J Environ Sci-China 16:414–419

    CAS  PubMed  Google Scholar 

  • Huang L, Baumgartl T, Mulligan D (2012) Is rhizosphere remediation sufficient for sustainable revegetation of mine tailings? Ann Bot 110:223–238

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang J, Nara K, Zong K, Lian CL (2014) Soil propagule banks of ectomycorrhizal fungi along forest development stages after mining. Microb Ecol. doi:10.1007/s00248-014-0484-4

    Google Scholar 

  • Ingestad T, Kahr M (1985) Nutrition and growth of coniferous seedlings at varied relative nitrogen addition rate. Physiol Plant 65:109–116

    Article  Google Scholar 

  • Jentschke G, Goldbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116

    Article  CAS  Google Scholar 

  • Jentschke G, Winter S, Godbold DL (1999) Ectomycorrhizas and cadmium toxicity in Norway spruce seedlings. Tree Physiol 19:23–30

    Article  CAS  PubMed  Google Scholar 

  • Jones MD, Hutchinson TC (1986) The effect of mycorrhizal infection on the response of Betula papyrifera to nickel and copper. New Phytol 102:429–442

    Article  CAS  Google Scholar 

  • Jones MD, Hutchinson TC (1988a) Nickel toxicity in mycorrhizal birch seedlings infected with Lactarius rufus or Scleroderma flavidum. 1. Effects on growth, photosynthesis, respiration and transpiration. New Phytol 108:451–459

    Article  CAS  Google Scholar 

  • Jones MD, Hutchinson TC (1988b) Nickel toxicity in mycorrhizal birch seedlings infected with Lactarius rufus or Scleroderma flavidum. 2. Uptake of nickel, calcium, magnesium, phosphorus and iron. New Phytol 108:461–470

    Article  CAS  Google Scholar 

  • Jones MD, Browning MHR, Hutchinson TC (1986) The influence of mycorrhizal associations on paper birch and jack pine seedlings when exposed to elevated copper, nickel or aluminum. Water Air Soil Pollut 31:441–448

    Article  CAS  Google Scholar 

  • Jourand P, Ducousso M, Reid R, Majorel C, Richert C, Riss J, Lebrun M (2010) Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of the host plant Eucalyptus globulus at toxic nickel concentrations. Tree Physiol 30:1311–1319

    Article  CAS  PubMed  Google Scholar 

  • Jourand P, Hannibal L, Majorel C, Mengant S, Ducousso M, Lebrun M (2014) Ectomycorrhizal Pisolithus albus inoculation of Acacia spirorbis and Eucalyptus globulus grown in ultramafic topsoil enhances plant growth and mineral nutrition while limits metal uptake. J Plant Physiol 171:164–172

    Article  CAS  PubMed  Google Scholar 

  • Khan G, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

    Article  CAS  PubMed  Google Scholar 

  • Kim CG, Power SA, Bell JNB (2004) Response of Pinus sylvestris seedlings to cadmium and mycorrhizal colonisation. Water Air Soil Pollut 155:189–203

    Article  CAS  Google Scholar 

  • Kozdroj J, Piotrowska-Seget Z, Krupa P (2007) Mycorrhizal fungi and ectomycorrhiza associated bacteria isolated from an industrial desert soil protect pine seedlings against Cd(II) impact. Ecotoxicology 16:449–456

    Article  CAS  PubMed  Google Scholar 

  • Krupa P, Kozdroj J (2007) Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris L.) seedlings. Water Air Soil Pollut 182:83–90

    Article  CAS  Google Scholar 

  • Krznaric E, Verbruggen N, Wevers JHL, Carleer R, Vangronsveld J, Colpaert JV (2009) Cd-tolerant Suillus luteus: a fungal insurance for pines exposed to Cd. Environ Pollut 157:1581–1588

    Article  CAS  PubMed  Google Scholar 

  • Li XL, Marschner H, George E (1991) Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant Soil 136:49–57

    Article  CAS  Google Scholar 

  • Marschner P, Godbold DL, Jentschke G (1996) Dynamics of lead accumulation in mycorrhizal and non-mycorrhizal Norway spruce (Picea abies (L) Karst). Plant Soil 178:239–245

    Article  CAS  Google Scholar 

  • Martin F, Diez J, Dell B, Delaruelle C (2002) Phylogeography of the ectomycorrhizal Pisolithus species as inferred from nuclear ribosomal DNA ITS sequences. New Phytol 153:345–357

    Article  CAS  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116:278–283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nguyen H, Polanco MC, Zwiazek JJ (2006) Gas exchange and growth responses of ectomycorrhizal Picea mariana, Picea glauca, and Pinus banksiana seedlings to NaCl and Na2SO4. Plant Biol 8:646–652

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Khasa DP, Greer CW (2007) Combining alders, frankiae, and mycorrhizae for the revegetation and remediation of contaminated ecosystems. Can J Bot 85:237–251

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, Great Britain

    Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology. Sinauer Associates, Sunderland

    Google Scholar 

  • Toler HD, Morton JB, Cumming JR (2005) Growth and metal accumulation of mycorrhizal sorghum exposed to elevated copper and zinc. Water Air Soil Pollut 164:155–172

    Article  CAS  Google Scholar 

  • van Tichelen KK, Colpaert JV, Vangronsveld J (2001) Ectomycorrhizal protection of Pinus sylvestris against copper toxicity. New Phytol 150:203–213

    Article  Google Scholar 

  • Wallace A (1984) Effect of phosphorus deficiency and copper excess on vegetative growth of bush bean plants in solution culture at two different solution pH levels. J Plant Nutr 7:603–608

    Article  CAS  Google Scholar 

  • Wu F, Liu Y, **a Y, Shen ZG, Chen YH (2011) Copper contamination of soils and vegetables in the vicinity of Jiuhuashan copper mine, China. Environ Earth Sci 64:761–769

    Article  CAS  Google Scholar 

  • Zimmer D, Baum C, Leinweber P, Hrynkiewicz K, Meissner R (2009) Associated bacteria increase the phytoextraction of cadmium and zinc from a metal-contaminated soil by mycorrhizal willows. Int J Phytorem 11:200–213

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Natural Science Foundation of China (NSFC-GDNSF U1133004, 31371545); the Japan Society for the Promotion of Science (JSPS, P08432); and the Science Foundation of Jiangsu Province, China (BE2014742; BE2013709, CX(14)2095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlan Lian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Nara, K., Wen, Z. et al. Growth and photosynthetic responses of ectomycorrhizal pine seedlings exposed to elevated Cu in soils. Mycorrhiza 25, 561–571 (2015). https://doi.org/10.1007/s00572-015-0629-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-015-0629-4

Keywords

Navigation