Log in

Dynamics of prolonged salt movement in the Glückstadt Graben (NW Germany) driven by tectonic and sedimentary processes

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The formation of salt structures exerted a major influence on the evolution of subsidence and sedimentation patterns in the Glückstadt Graben, which is part of the Central European Basin System and comprises a post-Permian sediment thickness of up to 11 km. Driven by regional tectonics and differential loading, large salt diapirs, salt walls and salt pillows developed. The resulting salt flow significantly influenced sediment distribution in the peripheral sinks adjacent to the salt structures and overprinted the regional subsidence patterns. In this study, we investigate the geometric and temporal evolution of salt structures and subsidence patterns in the central Glückstadt Graben. Along a key geological cross section, the post-Permian strata were sequentially decompacted and restored in order to reconstruct the subsidence history of minibasins between the salt structures. The structural restoration reveals that subsidence of peripheral sinks and salt structure growth were initiated in Early to Middle Triassic time. From the Late Triassic to the Middle Jurassic, salt movement and salt structure growth never ceased, but were faster during periods of crustal extension. Following a phase from Late Jurassic to the end of the early Late Cretaceous, in which minor salt flow occurred, salt movement was renewed, particularly in the marginal parts of the Glückstadt Graben. Subsidence rates and tectonic subsidence derived from backstrip** of 1D profiles reveal that especially the Early Triassic and Middle Keuper times were periods of regional extension. Three specific types of salt structures and adjacent peripheral sinks could be identified: (1) Graben centre salt walls possessing deep secondary peripheral sinks on the sides facing away from the basin centre, (2) platform salt walls, whose main peripheral sinks switched multiple times from one side of the salt wall to the other, and (3) Graben edge pillows, which show only one peripheral sink facing the basin centre.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Allen PA, Allen JR (2013) Basin analysis: principles and application to petroleum play assessment. Wiley, New York

    Google Scholar 

  • Arfai J, Jähne F, Lutz R, Franke D, Gaedicke C, Kley J (2014) Late Palaeozoic to Early Cenozoic geological evolution of the northwestern German North Sea (Entenschnabel): new results and insights. Neth J Geosci 93(04):147–174

    Article  Google Scholar 

  • Athy LF (1930) Density, porosity, and compaction of sedimentary rocks. AAPG Bull 14(1):1–24

    Google Scholar 

  • Bachmann GH, Grosse S (1989) Struktur und Entstehung des Norddeutschen Beckens - geologische und geophysikalische Interpretation einer verbesserten Bouguer-Schwerekarte. Nds Akad Geowiss Veröfftl 2:23–47

    Google Scholar 

  • Baldschuhn R (1996) Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor. Hannover

  • Baldschuhn R, Best G, Kockel F (1991) Inversion tectonics in the north-west German basin. Generation, accumulation, and production of Europes hydrocarbons. Spec Publ Eur Assoc Petroleum Geosci 1:149–159

    Google Scholar 

  • Baldschuhn R, Frisch U, Kockel F (1998) Der Salzkeil, ein strukturelles Requisit der saxonischen Tektonik. Zeitschrift der deutschen geologischen Gesellschaft, pp 59–69

  • Baldschuhn R, Binot F, Fleig S, Kockel F (2001) Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor. Hannover

  • Barnasch J (2010) Der Keuper im Westteil des Zentraleuropäischen Beckens (Deutschland, Niederlande, England, Dänemark): diskontinuierliche Sedimentation, Litho- , Zyklo- und Sequenzstratigraphie. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, pp 7–169

  • Bayer U, Maystrenko Y, Hoffmann N, Scheck-Wenderoth M, Meyer H (2003) 3D structural modelling and basin analysis of the Central European Basin System (CEBS) between the North Sea and Poland. Terra Nostra 3:1–4

    Google Scholar 

  • Baykulov M, Brink HJ, Gajewski D, Yoon MK (2009) Revisiting the structural setting of the Glueckstadt Graben salt stock family. North German basin. Tectonophysics 470(1):162–172

    Article  Google Scholar 

  • Best G, Kockel F, Schöneich H (1983) Geological history of the southern Horn Graben. In: Petroleum geology of the southeastern North Sea and the adjacent onshore areas. Springer, pp 25–33

  • Betz D, Führer F, Greiner G, Plein E (1987) Evolution of the Lower Saxony basin. Tectonophysics 137(1):127–170

    Article  Google Scholar 

  • Beutler G (2005) Stratigraphie von Deutschland, vol 4. E. Schweizerbart’sche, Verlagsbuchhandlung

    Google Scholar 

  • Bishop DJ, Buchanan PG, Bishop CJ (1995) Gravity-driven thin-skinned extension above Zechstein Group evaporites in the western central North Sea: an application of computer-aided section restoration techniques. Mar Pet Geol 12(2):115–135

    Article  Google Scholar 

  • Brink H, Dürschner H, Trappe H (1992) Some aspects of the late and post-Variscan development of the Northwestern German Basin. Tectonophysics 207(1):65–95

    Article  Google Scholar 

  • Buchanan PG, Bishop DJ, Hood DN (1996) Development of salt-related structures in the Central North Sea: results from section balancing. Geol Soc Lond Spec Publ 100(1):111–128

    Article  Google Scholar 

  • Dooley TP, Jackson MPA, Hudec MR (2009) Inflation and deflation of deeply buried salt stocks during lateral shortening. J Struct Geol 31(6):582–600

    Article  Google Scholar 

  • Doornenbal JC, Stevenson AG (2010) Petroleum geological atlas of the Southern Permian basin area. Houten, Netherlands, European Association of Geoscientists & Engineers

  • Duffy OB, Gawthorpe RL, Docherty M, Brocklehurst SH (2013) Mobile evaporite controls on the structural style and evolution of rift basins: Danish Central Graben, North Sea. Basin Res 25(3):310–330

    Article  Google Scholar 

  • Frisch U, Kockel F (1999) Quantification of early Cimmerian movements in NW-Germany. Zentralblatt Geol Paläontol I 7:571–600

    Google Scholar 

  • Gast R, Gundlach T (2006) Permian strike slip and extensional tectonics in Lower Saxony, Germany. Zeitschrift der deutschen Gesellschaft für Geowissenschaften 157(1):41–55

    Article  Google Scholar 

  • Ge H, Jackson MPA, Vendeville BC (1997) Kinematics and dynamics of salt tectonics driven by progradation. AAPG Bull 81(3):398–423

    Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235(4793):1156–1167

    Article  Google Scholar 

  • Hese F (2012) 3D-Modellierungen und Visualisierung von Untergrundstrukturen für die Nutzung des unterirdischen Raumes in Schleswig-Holstein. Christian-Albrechts-Universitat, Kiel

    Google Scholar 

  • Hossack J (1995) Salt tectonics: a global perspective: based on the Hedberg international research conference, Bath, UK, September 1993. In: Jackson M, Roberts D, Snelson S (eds) Salt tectonics: a global perspective, AAPG memoir, vol 65, American Association of Petroleum Geologists, pp 29–40

  • Hudec MR, Jackson MPA (2007) Terra infirma: understanding salt tectonics. Earth Sci Rev 82(1):1–28

    Article  Google Scholar 

  • Hudec MR, Jackson MPA (2011) The salt mine: a digital atlas of salt tectonics, vol 99. Bureau of Economic Geology Udden Book Series No. 5

  • Jackson MPA, Talbot CJ (1986) External shapes, strain rates, and dynamics of salt structures. Geol Soc Am Bull 97(3):305–323

    Article  Google Scholar 

  • Jackson MPA, Vendeville BC (1994) Regional extension as a geologic trigger for diapirism. Geol Soc Am Bull 106(1):57–73

    Article  Google Scholar 

  • Jaritz W (1987) The origin and development of salt structures in Northwest Germany. In: O’Brien I, Lerche J (eds) Dynamical geology of salt and related structures. Academic Press, Cambridge, pp 479–493

    Chapter  Google Scholar 

  • Jaritz W, Best G, Hildebrand G, J U (1991) Regionale Analyse der seismischen Geschwindigkeiten in Nordwestdeutschland. Geologisches Jahrbuch E 45:23–57

    Google Scholar 

  • Jones IF, Davison I (2014) Seismic imaging in and around salt bodies. Interpretation 2(4):SL1–SL20

    Article  Google Scholar 

  • Kley J, Franzke HJ, Jähne F, Krawczyk C, Lohr T, Reicherter K, Scheck-Wenderoth M, Sippel J, Tanner D, van Gent H, the SPP Structural Geology Group (2008) Strain and stress. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins: the Central European Basin System, Springer, Berlin, pp 97–124

  • Kockel F (2002) Rifting processes in NW-Germany and the German North Sea sector. Neth J Geosci 81:149–158

    Article  Google Scholar 

  • Kockel F, Krull P (1995) Endlagerung stark wärmeentwickelnder radioaktiver Abfalle in tiefen geologischen Formationen Deutschlands: Untersuchung und Bewertung von Salzformationen. Bundesanstalt für Geowissenschaften und Rohstoffe

  • Kozur H, Bachmann G (2008) Updated correlation of the Germanic Triassic with the Tethyan scale and assigned numeric ages. In: Krystyn L, Mandl GW (eds) Upper Triassic subdivisions, zonations and events, vol 76, Ber d Geol Bundesanst, pp 53–58

  • Kukla PA, Urai JL, Mohr M (2008) Dynamics of salt structures. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins: the Central European Basin System. Springer, Berlin, pp 291–306

    Google Scholar 

  • Lepper J, Röhling H, der DSK SPT (2013) Stratigraphie von Deutschland XI: Buntsandstein. No. Bd. 11 in Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, Schweizerbart’sche, E

  • Leveille JP, Jones IF, Zhou ZZ, Wang B, Liu F (2011) Subsalt imaging for exploration, production, and development: a review. Geophysics 76(5):WB3–WB20

    Article  Google Scholar 

  • Littke R, Scheck-Wenderoth M, Brix MR, Nelskamp S (2008) Subsidence, inversion and evolution of the thermal field. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins: the Central European Basin System. Springer, Berlin, pp 125–153

    Chapter  Google Scholar 

  • Lohr T, Krawczyk C, Tanner D, Samiee R, Endres H, Oncken O, Trappe H, Kukla P (2007) Strain partitioning due to salt: insights from interpretation of a 3D seismic data set in the NW German basin. Basin Res 19(4):579–597

    Article  Google Scholar 

  • Maystrenko Y, Bayer U, Scheck-Wenderoth M (2005a) Structure and evolution of the Glueckstadt Graben due to salt movements. Int J Earth Sci 94(5–6):799–814

    Article  Google Scholar 

  • Maystrenko Y, Bayer U, Scheck-Wenderoth M (2005b) The Glueckstadt Graben, a sedimentary record between the North and Baltic Sea in north Central Europe. Tectonophysics 397(1):113–126

    Article  Google Scholar 

  • Maystrenko Y, Bayer U, Scheck-Wenderoth M (2006) 3D reconstruction of salt movements within the deepest post-Permian structure of the Central European Basin System-the Glueckstadt Graben. Neth J Geosci 85(3):181

    Article  Google Scholar 

  • Maystrenko YP, Bayer U, Scheck-Wenderoth M (2013) Salt as a 3D element in structural modeling—example from the Central European Basin System. Tectonophysics 591:62–82

    Article  Google Scholar 

  • Mohr M, Kukla P, Urai J, Bresser G (2005) Multiphase salt tectonic evolution in NW Germany: seismic interpretation and retro-deformation. Int J Earth Sci 94(5–6):917–940

    Article  Google Scholar 

  • Mohr M, Warren JK, Kukla PA, Urai JL, Irmen A (2007) Subsurface seismic record of salt glaciers in an extensional intracontinental setting (Late Triassic of northwestern Germany). Geology 35(11):963–966

    Article  Google Scholar 

  • Nalpas T, Brun JP (1993) Salt flow and diapirism related to extension at crustal scale. Tectonophysics 228(3):349–362

    Article  Google Scholar 

  • Peel FJ (2014) How do salt withdrawal minibasins form? Insights from forward modelling, and implications for hydrocarbon migration. Tectonophysics 630:222–235

    Article  Google Scholar 

  • Purvis K, Okkerman JA (1996) Inversion of reservoir quality by early diagenesis: an example from the Triassic Buntsandstein, offshore the Netherlands. In: Geology of gas and oil under the Netherlands. Springer, pp 179–189

  • Quirk DG, Pilcher RS (2012) Flip–flop salt tectonics. Geol Soc Lond Spec Publ 363(1):245–264

    Article  Google Scholar 

  • Reinhold K, Krull P, Kockel F (2008) Salzstrukturen Norddeutschlands, Geologische Karte 1:500 000. Bundesanstalt für Geowissenschaften und Rohstoffe

  • Rodon S, Littke R (2005) Thermal maturity in the Central European Basin System (Schleswig-Holstein area): results of 1D basin modelling and new maturity maps. Int J Earth Sci 94(5–6):815–833

    Article  Google Scholar 

  • Röhling HG, Gast RE (1991) A lithostratigraphic subdivision of the Lower Triassic in the northwest German lowlands and the German sector of the North Sea, based on gamma-ray and sonic logs. The perennial Rotliegend saline lake in northwest Germany. Geologisches Jahrbuch A 119:3–24

    Google Scholar 

  • Rowan MG (1993) A systematic technique for the sequential restoration of salt structures. Tectonophysics 228(3):331–348

    Article  Google Scholar 

  • Rowan MG, Ratliff RA (2012) Cross-section restoration of salt-related deformation: best practices and potential pitfalls. J Struct Geol 41:24–37

    Article  Google Scholar 

  • Sannemann D (1968) Salt-stock Families in Northwestern Germany. AAPG Mem. 8:261–270

    Google Scholar 

  • Scheck-Wenderoth M, Lamarche J (2005) Crustal memory and basin evolution in the Central European Basin System—new insights from a 3D structural model. Tectonophysics 397(1):143–165

    Article  Google Scholar 

  • Scheck-Wenderoth M, Krzywiec P, Zühlke R, Maystrenko Y, Froitzheim N (2008a) Permian to Cretaceous tectonics. In: McCann T (ed) The geology of Central Europe. The Geological Society of London, pp 999–1030

  • Scheck-Wenderoth M, Maystrenko Y, Hbscher C, Hansen M, Mazur S (2008b) Dynamics of salt basin. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins: the Central European Basin System. Springer, Berlin, pp 307–321

    Google Scholar 

  • Schöner R (2006) Comparison of Rotliegend sandstone diagenesis from the northern and southern margin of the North German Basin, and implications for the importance of organic maturation and migration. Dissertation, Univ. Jena

  • Sclater JG, Christie PAF (1980) Continental stretching: an explanation of the post-mid-Cretaceous subsidence of the Central North Sea basin. J Geophys Res Solid Earth (1978–2012) 85(B7):3711–3739

  • Seni SJ, Jackson MPA (1983) Evolution of salt structures, East Texas diapir province, part 1: sedimentary record of halokinesis. AAPG Bull 67(8):1219–1244

    Google Scholar 

  • Sørensen K (1998) The salt pillow to diapir transition: evidence from unroofing unconformities in the Norwegian-Danish Basin. Pet Geosci 4(3):193–202

    Article  Google Scholar 

  • Stewart SA (2007) Salt tectonics in the North Sea Basin: a structural style template for seismic interpreters. Spec Publ Geol Soc Lond 272:361

    Article  Google Scholar 

  • Stollhofen H, Bachmann GH, Barnasch J, Bayer U, Beutler G, Franz M, Kästner M, Legler B, Mutterlose J, Radies D (2008) Upper Rotliegend to Early Cretaceous basin development. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins: the Central European Basin System. Springer, Berlin, pp 181–207

    Google Scholar 

  • Trusheim F (1960) Mechanism of salt migration in northern Germany. AAPG Bull 44(9):1519–1540

    Google Scholar 

  • Urai JL, Schléder Z, Spiers CJ, Kukla PA (2008) Flow and transport properties of salt rocks. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins: the Central European Basin System. Springer, Berlin, pp 277–290

    Google Scholar 

  • Van Wees JD, Stephenson RA, Ziegler PA, Bayer U, McCann T, Dadlez R, Gaupp R, Narkiewicz M, Bitzer F, Scheck M (2000) On the origin of the southern Permian Basin, Central Europe. Mar Pet Geol 17(1):43–59

    Article  Google Scholar 

  • Warsitzka M, Kley J, Kukowski N (2013) Salt diapirism driven by differential loading—some insights from analogue modelling. Tectonophysics 591:83–97

    Article  Google Scholar 

  • Warsitzka M, Kley J, Kukowski N (2015) Analogue experiments of salt flow and pillow growth due to basement faulting and differential loading. Solid Earth 6(1):9–31

    Article  Google Scholar 

  • Wolfgramm M, Rauppach K, Seibt P (2008) Reservoir—geological characterization of Mesozoic sandstones in the North German Basin by petrophysical and petrographical data. Zeitschrift für geologische Wissenschaften 36:249–265

    Google Scholar 

  • Yegorova T, Maystrenko Y, Bayer U, Scheck-Wenderoth M (2008) The Glueckstadt Graben of the North-German Basin: new insights into the structure from 3D and 2D gravity analyses. Int J Earth Sci 97(5):915–930

    Article  Google Scholar 

  • Yoon MK, Baykulov M, Dümmong S, Brink HJ, Gajewski D (2009) Reprocessing of deep seismic reflection data from the North German Basin with the common reflection surface stack. Tectonophysics 472(1):273–283

    Article  Google Scholar 

  • Ziegler PA (1982) Triassic rifts and facies patterns in Western and Central Europe. Geologische Rundschau 71(3):747–772

    Article  Google Scholar 

  • Ziegler PA (1990) Geological Atlas of Western and Central Europe, 1990. Geological Atlas of Western and Central Europe, Shell Internationale Petroleum Maatschappij, B.V

  • Zirngast M (1996) The development of the Gorleben salt dome (northwest Germany) based on quantitative analysis of peripheral sinks. Geol Soc Lond Spec Publ 100(1):203–226

    Article  Google Scholar 

Download references

Acknowledgments

Funding for Michael Warsitzka came from the Federal Ministry of Education and Research (BMBF) (Grant No. 03IS2091A INFLUINS) and the German Academic Exchange Service (DAAD). We gratefully acknowledge Midland Valley for providing free university licences of 2DMOVE™. We have benefited from helpful discussion with T. Voigt. Reviewers P. Kukla and Y. Maystrenko are thanked for valuable comments improving the contents and presentation of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Warsitzka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warsitzka, M., Kley, J., Jähne-Klingberg, F. et al. Dynamics of prolonged salt movement in the Glückstadt Graben (NW Germany) driven by tectonic and sedimentary processes. Int J Earth Sci (Geol Rundsch) 106, 131–155 (2017). https://doi.org/10.1007/s00531-016-1306-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1306-3

Keywords

Navigation