Log in

Relationships between carbon isotope evolution and variation of microbes during the Permian–Triassic transition at Meishan Section, South China

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

This paper investigates kerogen carbon isotopes, the difference between carbonate and kerogen carbon isotopes (Δ13Ccarb-kero = δ 13Ccarb − δ 13Ckero) and the difference between carbonate and n-C19 alkane compound-specific carbon isotopes (Δ13Ccarb-n-C19 = δ 13Ccarb − δ 13Cn-C19) during the Permian–Triassic transition at Meishan, South China. The results show that kerogen carbon isotopes underwent both gradual and sharp shifts in beds 23–25 and 26–29, respectively. The differences between carbonate and organic carbon isotopes, both the Δ13Ccarb-kero and Δ13Ccarb-n-C19, which are mainly affected by CO2-fixing enzyme and pCO2, oscillated frequently during the Permian–Triassic transition. Both the variations of Δ13Ccarb-n-C19 and Δ13Ccarb-kero coupled with the alternation between cyanobacteria and green sulfur bacteria indicated by biomarkers. The episodic low values of Δ13Ccarb-n-C19 corresponded to episodic blooms of green sulfur bacteria, while the episodic high values of Δ13Ccarb-n-C19 corresponded to episodic blooms of cyanobacteria. The relationships between the variation of carbon isotopes and biota show that the microbes which flourished after the extinction of macroorganism affected the carbon isotope fractionation greatly. Combining the carbon isotope compositions and the pattern of size variation of the conodont Neogondolella, this paper supposes that anoxia of the photic zone at bed 24 was episodic and it would be caused by the degradation of terrigenous organic matters by sulfate reducing bacteria in the upper water column. Considered together with results from previous research, the high resolution variation of the biogeochemistry presents the sequence of the important geo-events during the Permian–Triassic crisis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arthur MA, Dean WE, Claypool GE (1985) Anomalous 13C enrichment in modern marine organic carbon. Nature 315:216–218. doi:10.1038/315216a0

    Article  Google Scholar 

  • Baud A, Magaritz M, Holser WT (1989) Permian–Triassic of the Tethys: carbon isotope studies. Geol Rundsch 78:649–677. doi:10.1007/BF01776196

    Article  Google Scholar 

  • Benton MJ (1988) Mass extinctions in the fossil record of reptiles: paraphyly, pathchiness, and periodicity. In: Larwood GP (ed) Extinction and survival in the fossil record. Systematics Association Special Volume 34. Clarendon Press, Oxford, pp 269–294

  • Berner RA (2002) Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proc Natl Acad Sci USA 99:4172–4177. doi:10.1073/pnas.032095199

    Article  Google Scholar 

  • Berner RA, Kothavala Z (2001) GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 301:124–182. doi:10.2475/ajs.301.2.182

    Article  Google Scholar 

  • Bidigare RR, Fluegge A, Freeman KH, Hanson KL, Hayes JM, Hollander D et al (1997) Consistent fractionation of 13C in nature and in the laboratory: growth-rate effects in some haptophyte algae. Global Biogeochem Cycles 11:279–292. doi:10.1029/96GB03939

    Article  Google Scholar 

  • Cao CQ, Wang W, ** YG (2002) The change of carbon isotope during the Permian–Triassic boundary in Meishan, Zhejiang province. China Sci Bull 47:302–306. doi:10.1360/02tb9072

    Article  Google Scholar 

  • Courtillot VE, Renne PR (2003) On the ages of flood basalt events. C R Geosci 335:431–441

    Google Scholar 

  • de Wit MJ, Gosh JG, de Villiers S, Rakotosolofo N, Alexander J, Tripathi A et al (2002) Multiple organic carbon isotope reversals across the Permian/Triassic boundary of terrestrial Gondwana sequences: clues to extinction patterns and delayed ecosystem response. J Geol 110:227–240. doi:10.1086/338411

    Article  Google Scholar 

  • Erwin DH (1993) The great Paleozoic crisis: life and death in the Permian, Columbia, New York

  • Erwin DH (2006) Extinction: how life on earth nearly ended 250 million years ago. Princeton University Press, Princeton, p 306

    Google Scholar 

  • Fang ZJ (2004a) The pattern of the mass extinction and the change of the global ecosystem and its causes during the Permian–Triassic transition. In: Rong JY, Fang ZJ (eds) Mass extinction and recovery—evidence from the Palaeozoic and Triassic of South China. China University of Science and Technology press, Hefei, pp 785–928 (in Chinese with English abstract)

    Google Scholar 

  • Fang ZJ (2004b) Exploration on the pattern of the extinction of bivalve of South China. In: Rong JY, Fang ZJ (eds) Mass extinction and recovery—evidence from the Paleozoic and Triassic of South China. China University of Science and Technology press, Hefei, pp 571–646 (in Chinese with English abstract)

    Google Scholar 

  • Grard A, François LM, Dessert C, Dupré B, Goddéris Y (2005) Basaltic volcanism and mass extinction at the Permo-Triassic boundary: environmental impact and modeling of the global carbon cycle. Earth Planet Sci Lett 234:207–221. doi:10.1016/j.epsl.2005.02.027

    Article  Google Scholar 

  • Grice K, Cao CQ, Love GD, Böttcher ME, Twitchett RJ, Grosjean E et al (2005) Photic zone euxinia during the Permian–Triassic superanoxic event. Science 307:706–709. doi:10.1126/science.1104323

    Article  Google Scholar 

  • Haas J, Demény A, Hips K, Zajzon N, Weiszburg TG, Sudar M et al (2007) Biotic and environmental changes in the Permian–Triassic boundary interval recorded on a western Tethyan ramp in the Bukk Mountains, Hungary. Global Planet Change 55:136–154. doi:10.1016/j.gloplacha.2006.06.010

    Article  Google Scholar 

  • Hayes JM, Strauss H, Kaufman AJ (1999) The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem Geol 161:103–125. doi:10.1016/S0009-2541(99)00083-2

    Article  Google Scholar 

  • Hinga KR, Arthur MA, Pilson MEQ, Whitaker D (1994) Carbon isotope fractionation by marine phytoplankton in culture: the effects of CO2 concentration, pH, temperature, and species. Global Biogeochem Cycles 8:91–102. doi:10.1029/93GB03393

    Article  Google Scholar 

  • Holser WT, Schönlaub H-P, Attrep M, Boeckelmann K, Klein P, Magaritz M et al (1989) A unique geochemical record at the Permian/Triassic boundary. Nature 337:39–44. doi:10.1038/337039a0

    Article  Google Scholar 

  • Huang JH, Luo GM, Bai X, Tang XY (2007a) The organic fraction of the total carbon burial flux deduced from carbon isotopes across the Permo-Triassic boundary at Meishan, Zhejiang Province. Earth Sci J China Univ Geosci 32:763–767

    Google Scholar 

  • Huang XY, Jiao D, Lu LQ, **e SC, Huang JH, Wang YB et al (2007b) The fluctuating environment associated with the episodic biotic crisis during the Permo/Triassic transition: evidence from microbial biomarkers in Changxing, Zhejiang Province. Sci China Ser D 50:1052–1059. doi:10.1007/s11430-007-0024-x

    Article  Google Scholar 

  • Isozaki Y (1997) Permo-Triassic superanoxia and stratified superocean: records from lost deep sea. Science 276:235–238. doi:10.1126/science.276.5310.235

    Article  Google Scholar 

  • Jiang H, Lai X, Luo G, Aldridge R, Zhang K, Wignall P (2007a) Restudy of conodont zonation and evolution across the P/T boundary at Meishan section, Changxing, Zhejiang, China. Global Planet Change 55:39–55. doi:10.1016/j.gloplacha.2006.06.007

    Article  Google Scholar 

  • Jiang H, Lai X, Luo G, Aldridge R, Zhang K, Wignall P (2007b) Restudy of conodont zonation and evolution across the P/T boundary at Meishan section, Changxing, Zhejiang, China. Global Planet Change 55(1–3):39–55. doi:10.1016/j.gloplacha.2006.06.007

    Article  Google Scholar 

  • ** YG, Wang Y, Wang W, Shang QH, Cao CQ, Erwin DH (2000) Pattern of marine mass extinction near the Permian–Triassic boundary in south China. Science 289:432–436. doi:10.1126/science.289.5478.432

    Article  Google Scholar 

  • Killops S, Killops V (2005) Introduction to organic geochemistry. Blackwell, Oxford, pp 1–393

    Google Scholar 

  • King GM (1991) Terrestrial tetrapods and the end Permian event: a comparison of analyses. Hist Biol 5:239–255

    Article  Google Scholar 

  • Knoll AH, Bambach RK, Canfield DE, Grotzinger JP (1996) Comparative earth history and Late Permian mass extinction. Science 273:452–457. doi:10.1126/science.273.5274.452

    Article  Google Scholar 

  • Korte C, Kozur HW, Mohtat-Aghai P (2004) Dzhulfian to lowermost Triassic δ 13C record at the Permian/Triassic boundary section at Shahreza Central Iran. Hallesches Jahrb Geowiss Reihe B 18:73–78

    Google Scholar 

  • Kozur HW (1998) Some aspects of the Permian–Triassic boundary (PTB) and of the possible causes for the biotic crisis around this boundary. Palaeogeogr Palaeoclimatol Palaeoecol 143:227–272. doi:10.1016/S0031-0182(98)00113-8

    Article  Google Scholar 

  • Krull ES, Retallack GJ (2000) δ13C depth profiles from the paleosols across the Permian–Triassic boundary: evidence for methane release. Geol Soc Am Bull 112:1459–1472

    Google Scholar 

  • Krull ES, Lehrmann DJ, Druke D, Kessel B, Yu Y, Li R (2004) Stable carbon isotope stratigraphy across the Permian–Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, south China. Palaeogeogr Palaeoclimatol Palaeoecol 204:297–315. doi:10.1016/S0031-0182(03)00732-6

    Article  Google Scholar 

  • Kump LR, Arthur MA (1999) Interpreting carbon-isotope excursions: carbonates and organic matter. Chem Geol 161:181–198. doi:10.1016/S0009-2541(99)00086-8

    Article  Google Scholar 

  • Lai XL, Wignall PB, Zhang KX (2001) Palaeoecology of the conodonts Hindeodus and Clarkina during the Permian–Triassic transitional period. Palaeogeogr Palaeoclimatol Palaeoecol 171:63–72. doi:10.1016/S0031-0182(01)00269-3

    Article  Google Scholar 

  • Logan GA, Hayes JM, Hieshima GB, Summons RE (1995) Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376:53–56. doi:10.1038/376053a0

    Article  Google Scholar 

  • Luo GM, Lai XL, Jiang HS, Zhang KX (2006) Size variation of the end Permian conodont Neogondolella at Meishan Section, Changxing, Zhejiang and its significance. Sci China Ser D 49:337–347. doi:10.1007/s11430-006-0337-1

    Article  Google Scholar 

  • Magaritz M, Bart R, Baud A, Holser WT (1988) The carbon-isotope shift at the Permian/Triassic boundary in the southern Alps is gradual. Nature 331:337–339. doi:10.1038/331337a0

    Article  Google Scholar 

  • Magaritz M, Krishnamurthy RV, Holser WT (1992) The Parallel trend of organic and inorganic carbon isotope in Atps. Am J Sci 292:727–739

    Google Scholar 

  • Musashi M, Isozaki Y, Koike T, Kreulen R (2001) Stable carbon isotope signature in mid-Panthalassa shallow-water carbonates across the Permo-Triassic boundary: evidence for 13C-depleted superocean. Earth Planet Sci Lett 191:9–20. doi:10.1016/S0012-821X(01)00398-3

    Article  Google Scholar 

  • Orphan VJ, Hinrichs KU, Ussler W III, Paull CK, Taylor LT, Sylva SP et al (2001) Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol 67:1922–1934. doi:10.1128/AEM.67.4.1922-1934.2001

    Article  Google Scholar 

  • Payne JL, Kump LR (2007) Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth Planet Sci Lett 256:264–277. doi:10.1016/j.epsl.2007.01.034

    Article  Google Scholar 

  • Payne JL, Lehrmann DJ, Wei JY, Orchard MJ, Schrag DP, Knoll AH (2004) Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305:506–509. doi:10.1126/science.1097023

    Article  Google Scholar 

  • Quirk MM, Wardroper AMK, Wheatley RE, Maxwell JR (1984) Extended hopanoids in peat environments. Chem Geol 42(1–4):25–43. doi:10.1016/0009-2541(84)90003-2

    Article  Google Scholar 

  • Rampino MR, Caldeira K (2005) Major perturbation of ocean chemistry and a ‘Strangelove Ocean’ after the end-Permian mass extinction. Terra Nova 17:554–559. doi:10.1111/j.1365-3121.2005.00648.x

    Article  Google Scholar 

  • Rau GH, Takahashi T, Des Marais DJ, Repeta DJ, Martin JH (1992) The relationship between δ13C of organic matter and [CO2(aq)] in ocean surface water: data from a JGOFS site in the northeast Atlantic Ocean and a model. Geochim Cosmochim Acta 56:1413–1419. doi:10.1016/0016-7037(92)90073-R

    Article  Google Scholar 

  • Rau GH, Riebesell U, Wolf-Gladrow D (1997) CO2, aq-dependent photosynthetic 13C fractionation in the ocean: a model versus measurements. Global Biogeochem Cycles 11:267–278. doi:10.1029/97GB00328

    Article  Google Scholar 

  • Renne PR, Black MT, Zhang ZC, Richards MA, Basu AR (1995) Synchrony and causal relations between Permian–Triassic boundary crises and Siberian flood volcanism. Science 169:1413–1416. doi:10.1126/science.269.5229.1413

    Article  Google Scholar 

  • Riccardi A, Kump LR, Arthur MA, D’Hondt S (2007) Carbon isotopic evidence for chemocline upward excursions during the end-Permian event. Palaeogeogr Palaeoclimatol Palaeoecol 248:73–81. doi:10.1016/j.palaeo.2006.11.010

    Article  Google Scholar 

  • Schonlaub HP (1991) The Permian–Triassic of the Gartnerkofel-1 core (Carnic Alps, Austria): conodont biostratigraphy. In: Holser WT, Schonlaub GP (eds) The Permian–Triassic boundary in the Carnic Alps of Austria (Gartnerkofel region). Band, pp 79–98

  • Schwab V, Spangenberg JE (2004) Organic geochemistry across the Permian–Triassic transition at the Idrijca Valley, Western Slovenia. Appl Geochem 19:55–72. doi:10.1016/S0883-2927(03)00127-6

    Article  Google Scholar 

  • Schwark L, Frimmel A (2004) Chemostratigraphy of the Posidonia black shale, SW-Germany: II. Assessment of extent and persistence of photic-zone anoxia using aryl isoprenoid distributions. Chem Geol 206(3–4):231–248. doi:10.1016/j.chemgeo.2003.12.008

    Article  Google Scholar 

  • Svensen H, Planke S, Malthe-Sorenssen A, Jamtveit B, Myklebust R, Rasmussen Eidem T et al (2004) Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429:542–545. doi:10.1038/nature02566

    Article  Google Scholar 

  • van Breugel Y, Schouten S, Paetzel M, Ossebaar J, Sinninghe Damsté JS (2005) Reconstruction of δ 13C of chemocline CO2 (aq) in past oceans and lakes using the δ 13C of fossil isorenieratene. Earth Planet Sci Lett 235(1–2):421–434. doi:10.1016/j.epsl.2005.04.017

    Google Scholar 

  • Wang C (2007) Anomalous hopane distributions at the Permian–Triassic boundary, Meishan, China—evidence for the end-Permian marine ecosystem collapse. Org Geochem 38(1):52–66. doi:10.1016/j.orggeochem.2006.08.014

    Article  Google Scholar 

  • Wang Y, Cao CQ (2004) Overview the research on mass extinction during Paleozoic–Mesozoic transition of South China. In: Rong JY, Fang ZJ (eds) Mass extinction and recovery—evidence from the Paleozoic and Triassic of South China. China University of Science and Technology press, Hefei, pp 749–772 (in Chinese with English abstract)

    Google Scholar 

  • Wang CJ, Liu YM, Liu HX, Zhu L, Shi Q (2005) Geochemical significance of the relative enrichment of Pristane and the negative excursion of δ 13CPr across the Permian–Triassic boundary at Meishan, China. China Sci Bull 50:2213–2225. doi:10.1360/04wd0262

    Google Scholar 

  • Wignall PB (2001) Large igneous provinces and mass extinction. Earth Sci Rev 53:1–33. doi:10.1016/S0012-8252(00)00037-4

    Article  Google Scholar 

  • Wignall PB, Hallam A (1993) Gresbachian (earliest Triassic) palaeoenvironmental changes in the salt range, Pakistan and South China and their bearing on the Permo-Triassic mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 102:215–237. doi:10.1016/0031-0182(93)90068-T

    Article  Google Scholar 

  • Wignall PB, Twitchett RJ (1996) Oceanic anoxic and the end Permian mass extinction. Science 272:1155–1158. doi:10.1126/science.272.5265.1155

    Article  Google Scholar 

  • Wu SB, Liu JH (1991) The transgression and regression events from Changxingian to Griesbachian in South China. In: Yang ZY, Wu SB, Yin HF, Zhang KX (eds) Geological events during Permian–Triassic in South China. Geological Publishing House, Bei**g, pp 3–14 (in Chinese with English abstract)

    Google Scholar 

  • **e SC, Pancost RD, Yin HF, Wang HM, Evershed RP (2005) Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature 434:494–497. doi:10.1038/nature03396

    Article  Google Scholar 

  • **e SC, Pancost RD, Huang JH, Wignall PB, Yu JX, Tang XY et al (2007a) Changes in the global carbon cycle occurred as two episodes during the Permian–Triassic crisis. Geology 35:1083–1086. doi:10.1130/G24224A.1

    Article  Google Scholar 

  • **e SC, Pancost RD, Huang XY, Jiao D, Lu LQ, Huang JH et al (2007b) Molecular and isotopic evidence for episodic environment change across the Permo/Triassic boundary at Meishan in South China. Global Planet Change 55:56–65. doi:10.1016/j.gloplacha.2006.06.016

    Article  Google Scholar 

  • Xu DY, Yan Z (1993) Carbon isotope and iridium event markers near the Permian/Triassic boundary in the Meishan Section, Zhejiang Province, China. Palaeogeogr Palaeoclimatol Palaeoecol 104:171–175. doi:10.1016/0031-0182(93)90128-6

    Article  Google Scholar 

  • Yin H, Tong J (1998) Multidisciplinary high-resolution correlation of the Permian–Triassic boundary. Palaeogeogr Palaeoclimatol Palaeoecol 143:199–212. doi:10.1016/S0031-0182(98)00111-4

    Article  Google Scholar 

  • Yin H, Feng Q, Lai X, Baud A, Tong J (2007a) The protracted Permo-Triassic crisis and multi-episode extinction around the Permian–Triassic boundary. Global Planet Change 55:1–20. doi:10.1016/j.gloplacha.2006.06.005

    Article  Google Scholar 

  • Yin HF, Feng QL, Baud A, **e SC, Benton MJ, Lai XL et al (2007b) The prelude of the end-Permian mass extinction predates a postulated bolide impact. Int J Earth Sci 96:903–909. doi:10.1007/s00531-006-0135-1

    Article  Google Scholar 

  • Zhang CL, Li YL, Wall JD, Larsen L, Sassen R, Huang YS, Wang Y, Peacock A, White DC, Horita J, Cole DR (2002) Lipid and carbon isotopic evidence of methane-oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico. Geology 30:239–242

    Article  Google Scholar 

  • Zhang F, Feng QL, He WH, Meng YY, Gu SZ (2006) Multidisciplinary stratigraphy across the Permian–Triassic boundary in deep-water environment of the Dongpan section, south China. Nor J Geol 86:125–131

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Xulong Lai for his suggestions on the study of conodont. And the thanks were also sent to Dr. Michael M. Joachimski for his constructive suggestions on the oceanic carbon cycle. Two anonymous reviewers are greatly acknowledged for comments and suggestions that substantially improved the manuscript. This work was supported by National Natural Science Foundation (grants no. 40730209, 40525008), the 111 project and the SinoPec project of the China Petroleum and Chemical Corporation (G0800-06-ZS-319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genming Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, G., Huang, J., **e, S. et al. Relationships between carbon isotope evolution and variation of microbes during the Permian–Triassic transition at Meishan Section, South China. Int J Earth Sci (Geol Rundsch) 99, 775–784 (2010). https://doi.org/10.1007/s00531-009-0421-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-009-0421-9

Keywords

Navigation