Log in

New information on the thermal history of the southwestern Lower Saxony Basin, northern Germany, based on fission track analysis

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The southwestern part of the Lower Saxony Basin (LSB) is characterized by gravity and magnetic anomalies and by an extremely high thermal maturity of organic matter. This was for many years attributed to a Late Cretaceous intrusion, but actually deep burial is being debated. The complex thermal history of the area has been studied by fission track analysis. Zircon data provide evidence for widespread (hydro)thermal activity during the Permian and Upper Jurassic/Lower Cretaceous. Apatite ages indicate a major cooling event in the mid Cretaceous (∼89–72 Ma) reflecting the time of inversion of the LSB. During the Cretaceous, the cooling of the basin centre was rapid compared to the basin margins. Apatite fission track ages from borehole samples which are recently within the upper part of the APAZ indicate a young heating of the sedimentary sequences until present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bachmann GH, Grosse S (1989) Struktur und Entstehung des Norddeutschen Beckens - Geologische und geophysikalische Interpretation einer verbesserten Bouguer-Schwerekarte. Das Norddeutsche Becken. Nds Akad Geowiss Hannover, Veröff 2:23–47

    Google Scholar 

  • Bachmann GH, Hoffmann N (1995) Entstehung des Mitteleuro-päischen Rotliegend-Beckens. Terra Nostra 95/7—11th meeting on geodynamics of the european variscides - 2nd symposium on permocarboniferous igneous rocks 27.–29. Oktober 1995, GFZ Potsdam, extd abstr.12–15

  • Baldschuhn R, Best G, Kockel F (1991) Inversion Tectonics in the North-West German Basin. In: Spencer AM (ed) Generation, accumulation and production of Europe’s hydrocarbons. EAPG, Spec Pub, pp 149–159

  • Baldschuhn R, Kockel F (1999) Das Osning-Lineament am Südrand des Niedersachsen-Beckens. Z Dtsch Geol Ges 150(4):673–695

    Google Scholar 

  • Barker CE (1989) Temperature and time in the thermal maturation of sedimentary organic matter. In: Naeser ND, McCulloh TH (eds). Thermal history of Sedimentary Basins. Springer, Berlin Heidelberg New York, pp 75–98

    Google Scholar 

  • Barker CE, Goldstein RH (1990) Fluid-inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer. Geol 18:1003–1006

    Article  Google Scholar 

  • Barker CE, Pawlewicz MJ (1994) Calculation of vitrinite reflectance from thermal histories and peak temperatures. A comparison of methods. In: Mukhopadhyay PK, Dow WG (eds) Vitrinite reflectance as a maturity parameter: applications and limitations. ACS Symposium Series, pp 216–229

  • Bartenstein R, Teichmüller R, Teichmüller M (1971) Die Umwandlung der organischen Substanz im Dach des Bramscher Massivs. Fortschr Geol Rheinl u Westf 18:501–538

    Google Scholar 

  • Bernet M, Brandon MT, Garver JI, Molitor B (2004) Fundamentals of detrital zircon fission-track analysis for provenance and exhumation studies with examples from the European Alps. In: Bernet M, Spiegel C (eds) Detrital thermochronology: provenance analysis, exhumation, and landscape evolution of mountain belts. Geol Soc Am Spec Pub 378: pp 126

  • Betz D, Führer F, Greiner G, Plein E (1987) Evolution of the Lower Saxony Basin. Compressional intra-plate deformations in the Alpine Foreland. Tectonophysics 137:127–170

    Article  Google Scholar 

  • Bodri L, Bodri B (1985) On the correlation between heat flow and crustal thickness. Tectonophysics 120:69–81

    Article  Google Scholar 

  • Brandon MT, Roden-Tice MK, Garver JI (1998) Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. GSA Bull 110/8:985–1009

    Article  Google Scholar 

  • Brink HJ (2002) Die Anomalie von Bramsche - Wieder eine offene Frage. Erdöl Erdgas Kohle 118(1):18–22

    Google Scholar 

  • Brix MR, Stöckhert B, Seidel E, Theye T, Thomson SN, Küster M (2002) Thermobarometric data from a fossil partial annealing zone in high pressure – low temperature rocks of eastern and central Crete, Greece. Tectonophysics 349:309–326

    Article  Google Scholar 

  • Büker C, Littke R, Welte DH (1995) 2D modelling of the thermal evolution of Carboniferous and Devonian sedimentary rocks of the eastern Ruhr basin and northern Rhenish Massif, Germany. Z Dtsch Geol Ges 146:321–339

    Google Scholar 

  • Buntebarth G, Teichmüller R (1979) Zur Ermittlung der Paläotemperaturen im Dach des Bramscher Intrusivs aufgrund von Inkohlungsdaten. Fortschr Geol Rheinl Westf 27:171–182

    Google Scholar 

  • Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40:259–274

    Article  Google Scholar 

  • Duddy IR, Green PF, Bray RJ, Hegarty KA (1994) Recognition of the thermal effects of fluid flow in sedimentary basins. In Parnell J (ed) Geofluids: origin, migration and evolution of fluids in Sedimentary Basins, vol 78. Geol Soc Spec Pub, London, pp 325–345

  • Duddy IR, Green PF, Laslett GM (1988) Thermal annealing of fission tracks in apatite: 3. Variable temperature behaviour. Chem Geol 73:25–38

    Google Scholar 

  • Dunkl I (2002) Trackkey: a windows program for calculation and graphical presentation of fission track data. Comput Geosci 28(1):3–12

    Article  Google Scholar 

  • Drozdzewski G (1988) Die Wurzel der Osning-Überschiebung und der Mechanismus herzynischer Inversionsbewegungen in Mitteleuropa. Geol Rundschau 77(1):127–141

    Article  Google Scholar 

  • Flotow AV, Berroth A, Schmehl H (1931) Relative Bestimmungen der Schwerkraft auf 115 Stationen in Norddeutschland. Veröff preuß geodät Inst 106:1–88

    Google Scholar 

  • Füchtbauer H, Jankowski B, David E, David F, Frank F, Kraft T, Sedat B, Selter V, Strehlau K (1991) Sedimentologie des Nordwestdeutschen Oberkarbons. DGMK-Forschungsbericht, Hamburg 468:75–115

  • Füchtbauer H, Müller G (1970) Sedimente und Sedimentgesteine. Sediment-Petrologie T II. Schweizerbart, Stuttgart, pp 726

    Google Scholar 

  • Galbraith RF, Laslett GM (1993) Statistical models for mixed fission track ages. Nucl Tracks 21:459–470

    Google Scholar 

  • Gallagher K (1995) Evolving temperature histories from apatite fission-track data. Earth Planet Sci Lett 126:421–435

    Article  Google Scholar 

  • Gallagher K, Brown R, Johnson C (1998) Fission track analysis and its applications to geologic problems. Ann Rev Earth Planet Sci 26:519–572

    Article  Google Scholar 

  • Garver JI (2005) Stability of fission tracks in radiation-damaged zircon from the Cordillera Huayhuash, Northern Peru. GSA abstr 37/1:76

    Google Scholar 

  • Garver JI, Bartholomew A (2001) Partial resetting of fission tracks in detrital zircon: dating low temperature events in the Hudson Valley (NY). GSA Spec Pap, 33, pp 83

  • Giebeler-Degro M (1986) Zur Tiefenerkundung des Niedersächsischen Tektogens durch dreidimensionale Simulationsrechnung. Unpublished Thesis, TU Clausthal, pp 202

  • Gleadow AJW (1981) Fission track dating methods: what are the real alternatives? Nucl Tracks 5:3–14

    Article  Google Scholar 

  • Gleadow AJW, Duddy IR, Green PF, Lovering JF (1986) Confined fission track lengths in apatite: a diagnostic for thermal analysis. Contrib Mineral Petrol 94:405–415

    Article  Google Scholar 

  • Green PF, Duddy IR, Gleadow AJW, Tingate PR, Laslett GM (1986) Thermal annealing of fission tracks in apatite: 1. A Qualitative description. Chem Geol 59:237–253

    Article  Google Scholar 

  • Green PF, Duddy IR, Laslett GM, Hegarthy KA, Gleadow AJW, Lovering JF (1989) Thermal annealing of fission tracks in apatite: 4. Quantitative modelling techniques and extension to geological time scales. Chem Geol 79:155–182

    Google Scholar 

  • Gretener PE, Curtis CD (1982) Role of temperature and time on organic metamorphism. AAPG Bull 66:1124–1149

    Article  Google Scholar 

  • Haenel R (1980) Atlas of Subsurface Temperatures in the European Community. Commission European Community, Brussels, 43 maps

  • Hasebe N, Mori S, Tagami T, Matsui R (2003) Geological partial annealing zone of zircon fission-track system: additional constraints from the deep drilling MITI-Nishikubiki and MITI-Mishima. Chem Geol 199:45–52

    Google Scholar 

  • Hillis RR (1992) A two-layer lithospheric compressional model for the Tertiary uplift of the southern United Kingdom. Geoph Res Lett 19:573–576

    Article  Google Scholar 

  • Hurford AJ, Green PF (1983) The zeta age calibration of fission track dating. Chem Geol 1:285–317

    Article  Google Scholar 

  • Hurford AJ (1990) Standardization of fission track dating calibration: recommendation by the Fission Track Working Group of the I.U.G.S. Subcommission on Geochronology. Chem Geol (Isot Geosci) 80:171–178

    Article  Google Scholar 

  • Hurford AJ, Carter A (1991) The role of fission track dating in discrimination of provenance. In: Moreton AC, Todd SP, Haughton PDW (eds) Developments in sedimentary provenance studies, vol 57. Spec Pub Geol Soc, London, pp 67–78

  • Jacobs J, Breitkreuz C (2003) Zircon and apatite fission-track thermochronology of Late Carboniferous volcanic rocks of the NE German Basin. Int J Earth Sci 92:165–172

    Article  Google Scholar 

  • Kasuya HG, Naeser CW (1988) The effect of α-damage of fission track annealing in zircon. Nucl Tracks Radiat Measure 14:477–480

    Google Scholar 

  • Ketcham RA, Donelick RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics: III extrapolation to geological time scales. Am Mineral 84:1235–1255

    Google Scholar 

  • Ketcham RA, Donelick RA, Donelick MB (2000) AFTSolve: a program for multikinetic modeling of apatite fission-track data. Geol Mat Res, 2/1 (electronic)

  • Koch J, Arnemann H (1975) Die Inkohlung in Gesteinen des Rhät und Lias im südlichen Nordwestdeutschland. Geol Jb 29:33–43

    Google Scholar 

  • Kockel F, Wehner H, Gerling P (1994) Petroleum systems of the Lower Saxony Basin, Germany. In: Magoon LBD, Dow WG (eds) The Petroleum system from Source to Trap. AAPG Mem, Tulsa, pp 573–586

    Google Scholar 

  • Kockel F (1998) Die kaledonische Ära, die variszische Ära, das Rotliegend. In: Geotektonischer Atlas von NW-Deutschland 1:300 000, Die paläogeographische und strukturelle Entwicklung NW-Deutschlands; Bd 2, BGR Hannover

  • Laslett GM, Kendall WS, Gleadow AJW, Duddy IR (1982) Bias in measurement of fission track length distributions. Nucl Tracks 6:79–85

    Google Scholar 

  • Laslett GM, Green PF, Duddy IR, Gleadow AJW (1987) Thermal annealing of fission tracks in apatite: 2. A quantitative analysis. Chem Geol 65:1–13

    Article  Google Scholar 

  • Leischner K (1994) Kalibration simulierter Temperaturgeschichten von Sedimentgesteinen. Ber FZ Jülich 2909: 309, ISSN 0944–2952

  • Leischner K, Welte DH, Littke R (1993) Fluid inclusions and organic maturity parameters as calibration tools in basin modelling. In: Doré AG, Augustson JH, Hermanrud C, Stewart DJ, Sylta O (eds) Basin modelling: advances and applications. Norwegian Petrol Soc Spec Pub. Elsevier, Amsterdam, pp 161–172

    Google Scholar 

  • Lopatin NV (1971) Temperature and geologic time as factors in coalification. Izv Akad Nauk SSSR Ser Geol 3:95–106

    Google Scholar 

  • Marx J, Huebscher H-D, Hoth K, Korich D, Kramer W (1995) Vulkanostratigraphie und Geochemie der Eruptivkomplexe. In Plein E (ed) Norddeutsches Rotliegend-Becken. Rotliegend-Monographie, Teil II. Courier Forsch. Inst. Seckenberg, Frankfurt a.M. 183, pp 54–83

  • Mundry E (1971) Der Temperaturverlauf im Dach des Bramscher Massivs nach der Wärmeleitungstheorie. Fortschr Geol Rheinl Westf 18:539–546

    Google Scholar 

  • Mukhopadhyay PK, Dow WG (1994) Vitrinite reflectance as a maturity parameter. AGS Symp Ser 570, Am Chem Soc, pp 216–229

  • Naeser CW (1976) Fission track dating. Open-File Rep. – U.S. Geo Surv, pp 76–190

  • Neugebauer HJ (1989) Dynamisch-thermische Aspekte der Beckenentwicklung. Mintrop-Seminar 9:287–302, Bochum

    Google Scholar 

  • Neunzert GH, Gaupp R, Littke R (1996) Absenkungs- und Temperaturgeschichte paläozoischer und mesozoischer Formationen im Nordwestdeutschen Becken. Z Dtsch Geol Ges 147(2):183–208

    Google Scholar 

  • NITG-TNO (2000) Geological Atlas of the Subsurface of the Netherlands, Explanations to Map Sheet VI Veendam-Hoogeveen. Netherlands Institute of Applied Geoscience TNO, Harlem, pp 152

  • Nodop J (1971) Tiefenrefraktionsseismischer Befund im Profil Versmold-Lübbecke-Nienburg. Fortschr Geol Rheinl Westf 18:411–422

    Google Scholar 

  • Petmecky SP (1998) Numerische Simulation der Entwicklungsgeschichte des zentralen Niedersächsischen Becken unter besonderer Berücksichtigung der Erdgaslagerstätten-Bildung. Ber FZ Jülich 3567: 242, ISSN 0944–2952

  • Petmecky SP, Meier L, Reiser H, Littke R (1999) High Thermal Maturity in the Lower Saxony Basin: Intrusion or Deep Burial? Tectonophysics 304:317–344

    Google Scholar 

  • Plein E (1978) Rotliegend-Ablagerungen im Norddeutschen Becken. Z Dtsch Geol Ges 129(1):71–97

    Google Scholar 

  • Plein E (1993) Bemerkungen zum Ablauf der paläogeographischen Entwicklung im Stefan und Rotliegend des Norddeutschen Beckens. Geol Jb A 131:99–116

    Google Scholar 

  • Poelchau HS, Baker DR, Hantschel T, Horsfield B, Wygrala B (1997) Basin simulation on the design of the conceptual basin model. In: Welte DH, Horsfield B, Baker DR (eds) Petroleum and basin evolution. Springer, Berlin, pp 3–70

  • Rahn MK, Brandon MT, Batt GE, Garver JI (2000) Fission-track annealing in ‘zero-damage’ zircons: field constraints and an empirical model. 9th Int Conf Fission Track Dating Thermochronol, Lorne, Australia, Abstr: 271

  • Rahn MK, Brandon MT, Batt GE, Garver JI (2004) A zero damage model for fission track annealing in zircon. Amer Mineralogist 89:473–484

    Google Scholar 

  • Rahn MK (2001) The metamorphic and exhumation history of the Helvetic Alps, Switzerland, as revealed by apatite and zircon fission tracks. PhD Thesis, Universität Freiburg, Freiburg, pp 140

  • Riley BCD (2002) Preferential thermal resetting of fission tracks in radiation-damaged detrital zircon grains: case study from the Laramide of Arizona. GSA Pap, 212-12, GSA, Boulder, Colorado

  • Ritter U (1986) Heat flow during the carboniferous and mesozoic of the Northwest German Basin. Geol Rdsch, 75:293–300

    Article  Google Scholar 

  • Rodon S, Littke R (2005) Thermal maturity in the Central European Basin system (Schleswig-Holstein area): Results of 1D basin modelling and new maturity maps. Int J Earth Sci Spec Pub (this issue)

  • Senglaub Y, Littke R, Brix MR (in press) Numerical modelling of burial and temperature history as an approach for an alternative interpretation of the Bramsche anomaly, Lower Saxony Basin. Int J Earth Sci Spec Pub (in press)

  • Schmidt A (1914) Die magnetische Vermessung I. Ordnung des Königreichs Preußen, 1898 bis 1903, nach den Beobachtungen von M Eschenhagen und J Edler. Veröff Preuß Meteorolog Inst, Berlin, 7 maps

  • Stadler G (1971) Die Vererzungen im Bereich des Bramscher Massivs und seiner Umgebung. Fortschr Geol Rheinld Westf 18:439–500

    Google Scholar 

  • Stadler G, Teichmüller R (1971) Zusammenfassender Überblick über die Entwicklung des Bramscher Massivs und des Niedersächsischen Tektogens. Fortschr Geol Rheinld Westf 18: 547–564

    Google Scholar 

  • Tagami T, Shimada C (1996) Natural long-term annealing of the zircon fission track system around a granitic pluton. J Geophys Res 101(B):11353–11364

    Article  Google Scholar 

  • Tagami T, Galbraith RF, Yamada R, Laslett GM (1998) Revised annealing kinetics of fission tracks in zircon and geological implications. In: Van den haute P, De Corte F, (eds) Advances in fission-track geochronology. Kluwer, Dordrecht, pp 99–112

  • Taylor GH, Teichmüller M, Davis A, Diessel CFK, Littke R, Robert P (1998) Organic Petrology. Gebrüder Borntraeger, Berlin, pp 704

  • Teichmüller M, Teichmüller R (1951) Inkohlungsfragen im Osnabrücker Raum. N Jb Geol Pal Monatshefte 1951:69–85

    Google Scholar 

  • Teichmüller M, Teichmüller R, Bartenstein H (1984) Inkohlung und Erdgas - Eine neue Inkohlungskarte der Karbon-Oberfläche in Nordwest-Deutschland. Fortschr Geol Rheinl Westf 32:11–34

    Google Scholar 

  • Thiermann A (1980) Erläuterungen zu Blatt 3612 Mettingen. Geol Kt Nordrh-Westf, Erl. 3612 Mettingen. Krefeld, pp 200

  • Thyssen F, Allnoch HG, Lütkebohmert G (1971) Einige Ergebnisse geophysikalischer Arbeiten im Bereich der Bramscher Anomalie. Fortschr Geol Rheinl Westf 18:395–410

    Google Scholar 

  • Wagner GA (1968) Fission-track dating of apatites. Earth Planet Sci Lett 4:411–415

    Article  Google Scholar 

  • Wagner GA, Van den haute P (1992) Fission track dating. Enke, Stuttgart, pp 285

  • Wees V J-D, Stephenson RA, Ziegler PA, Bayer U, McCann T, Dadlez R, Gaupp R, Narkiewicz M, Bitzer F, Scheck M (2000) On the Origin of the Southern Permian Basin, Central Europe. Mar Petrol Geol 17:43–59

    Article  Google Scholar 

  • Wygrala BP (1989) Integrated stydy of an oil field in the southern Po basin, Northern Italy. Ber FZ Jülich 2313, pp 217

  • Yamada R, Tagami T, Nishimura S, Ito H (1995) Annealing kinetics of fission tracks in zircon: an experimental study. Chem Geol 122:249–258

    Article  Google Scholar 

  • Ziegler PA (1982) Triassic rifts and facies patterns in Western and Central Europe. Int J Earth Sci (Geol Rundschau) 71(3):747–772

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG grant no. Li 618/12) in the framework of the priority programme 1135 “Dynamics of sedimentary basins under varying stress regimes: the example of the Central European Basin System”. Frank Hansen is thanked for providing the mineral separates and preparing the mounts for the irradiations. The paper benefited greatly from very constructive reviews by U. Glasmacher and H.-J. Brink.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Brix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senglaub, Y., Brix, M.R., Adriasola, A.C. et al. New information on the thermal history of the southwestern Lower Saxony Basin, northern Germany, based on fission track analysis. Int J Earth Sci (Geol Rundsch) 94, 876–896 (2005). https://doi.org/10.1007/s00531-005-0008-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-005-0008-z

Keywords

Navigation