Log in

Automated segmentation of choroidal neovascularization in optical coherence tomography images using multi-scale convolutional neural networks with structure prior

  • Special Issue Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Automated segmentation of choroidal neovascularization (CNV) in optical coherence tomography (OCT) images plays an important role for the treatment of CNV disease. This paper proposes multi-scale convolutional neural networks with structure prior to segment CNV from OCT data. The proposed framework consists of two stages. In the first stage, the structure prior learning method based on sparse representation-based classification and the local potential function is developed to capture the global spatial structure and local similarity structure prior. The obtained prior can be used to improve the distinctiveness between CNV and background patches. In the second stage, multi-scale CNN model with incorporation of the learned structure prior is constructed for CNV segmentation. In this stage, multi-scale analysis is used to capture effective contextual information, which is robust to varying sizes of CNV. The proposed method was evaluated on 15 spectral domain OCT data with CNV. The experimental results demonstrate the effectiveness of proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dewan, A., Liu, M., Hartman, S., Zhang, S.S., Liu, D.T., Zhao, C., Tam, P.O., Chan, W.M., Lam, D.S., Snyder, M., et al.: HTRA1 promoter polymorphism in wet age-related macular degeneration. Science. 314, 5801, 989–992 (2006)

    Article  Google Scholar 

  2. Chen, X., Zhang, L., Sohn, E.H., Lee, K., Niemeijer, M., Chen, J., Sonka, M., Abramoff, M.D.: Quantification of external limiting membrane disruption caused by diabetic macular edema from SD-OCT. Invest. Ophthalmol. Vis. Sci. 53(13), 8042–8048 (2012)

    Article  Google Scholar 

  3. Chen, X., Niemeijer, M., Zhang, L., Lee, K., Abràmoff, M.D., Sonka, M.: 3D segmentation of fluid-associated abnormalities in retinal OCT: probability constrained graph–search–graph-cut. IEEE Trans. Med. Imaging. 31(8), 1521–1531 (2012)

    Article  Google Scholar 

  4. de Carlo, T.E., Bonini Filho, M.A., Chin, A.T., Adhi, M., Ferrara, D., Baumal, C.R., Witkin, A.J., Reichel, E., Duker, J.S., Waheed, N.K.: Spectral-domain optical coherence tomography angiography of choroidal neovascularization. Ophthalmology. 122, 6, 1228–1238 (2015)

    Article  Google Scholar 

  5. Shi, F., Chen, X., Zhao, H., Zhu, W., **ang, D., Gao, E., Sonka, M., Chen, H.: Automated 3-D retinal layer segmentation of macular optical coherence tomography images with serous pigment epithelial detachments. IEEE Trans. Med. Imaging 34, 2, 441–452 (2015)

    Article  Google Scholar 

  6. Liu, L., Gao, S.S., Bailey, S.T., Huang, D., Li, D., Jia, Y.: Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography. Biomed. Opt. Express. 6, 9, 3564–3576 (2015)

    Article  Google Scholar 

  7. Zhang, J., Gao, Y., Gao, Y., Brent, M., Shen, D.: Detecting anatomical landmarks for fast Alzheimer’s disease diagnosis. IEEE Trans. Med. Imaging. 35(12), 2524–2533 (2016)

    Article  Google Scholar 

  8. Gao, S.S., Liu, L., Bailey, S.T., Flaxel, C.J., Huang, D., Li, D., Jia, Y.: Quantification of choroidal neovascularization vessel length using optical coherence tomography angiography. J. Biomed. Opt. 21(7), 076010–076010 (2016)

    Article  Google Scholar 

  9. Abdelmoula, W., Shah, S., Fahmy, A.S.: Segmentation of choroidal neovascularization in fundus fluorescein angiograms. IEEE Trans. Biomed. Eng. 60(5), 1439–1445 (2013)

    Article  Google Scholar 

  10. Tsai, C.L., Yang, Y.L., Chen, S.J., Lin, K.S., Chan, C.H., Lin, W.Y.: Automatic characterization of classic choroidal neovascularization by using adaboost for supervised learning. Invest. Ophthalmol. Vis. Sci. 52(5), 2767–2774 (2011)

    Article  Google Scholar 

  11. Xu, J., **ang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., Madabhushi, A.: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging. 35(1), 119–130 (2016)

    Article  Google Scholar 

  12. van Tulder, G., de Bruijne, M.: Combining generative and discriminative representation learning in convolutional restricted Boltzmann machines. IEEE Trans. Med. Imaging, 35, 5, 1262–1272 (2016)

    Article  Google Scholar 

  13. Sirinukunwattana, K., Raza, S., Tsang, Y.W., Snead, D., Cree, I., Rajpoot, N.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging. 35(5), 1196–1206 (2016)

    Article  Google Scholar 

  14. Setio, A.A., Ciompi, F., Litjens, G., Gerke, P., Jacobs, C., van Riel, S., Winkler Wille, M., Naqibullah, M., Sanchez, C., van Ginneken, B.: Pulmonary nodule detection in CT images using multiview convolutional networks. IEEE Trans. Med. Imaging. 35(5), 1160–1169 (2016)

    Article  Google Scholar 

  15. Viergever, M.A., Mendrik, A.M., de Vries, L.S., Benders, M.J., Isgum, I.: Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans. Med. Imaging. 35(5), 1252–1261 (2016)

    Article  Google Scholar 

  16. Zhang, W., Li, R., Deng, H., Wang, L., Lin, W., Ji, S., Shen, D.: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage 108, 214–224 (2015)

    Article  Google Scholar 

  17. Ghesu, F., Krubasik, E., Georgescu, B., Singh, V., Zheng, Y., Hornegger, J., Comaniciu, D.: Marginal space deep learning: efficient architecture for volumetric image parsing. IEEE Trans. Med. Imaging. 35(5), 1217–1228 (2016)

    Article  Google Scholar 

  18. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  19. Liu, M., Zhang, D., Shen, D.: Relationship induced multi-template learning for diagnosis of Alzheimer’s disease and mild cognitive impairment. IEEE Trans. Med. Imaging. 35(6), 1463–1474 (2016)

    Article  Google Scholar 

  20. Zhang, J., Gao, Y., Wang, L., Tang, Z., **a, J.J.: D Shen. Automatic craniomaxillofacial landmark digitization via segmentation-guided partially-joint regression forest model and multi-scale statistical features. IEEE Trans. Biomed. Eng. 63, 9, 1820–1829 (2016)

    Article  Google Scholar 

  21. **, X., Shi, H., Han, L., Wang, T., Ding, H.Y., Zhang, G., Tang, Y., Ying, Y.: Breast tumor segmentation with prior knowledge learning. Neurocomputing 237, 145–149, (2017)

    Article  Google Scholar 

  22. Wang, L., Chen, K.C., Gao, Y., Shi, F., Liao, S., Li, G., Shen, S.G., Yan, J., Lee, P.K., Chow, B., Liu, N.X., **a, J.J., Shen, D.: Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization. Med. Phys. 41, 4, 6372–6387 (2014)

    Article  Google Scholar 

  23. Liu, M., Zhang, D.: Pairwise constraint-guided sparse learning for feature selection. IEEE Trans. Cybern. 46, 1, 298–310, (2016)

    Article  MathSciNet  Google Scholar 

  24. Liu, M., Zhang, J., Yap, P.-T., Shen, D.: View-aligned hypergraph learning for Alzheimer’s disease diagnosis with incomplete multi-modality data. Med. Image Anal. 36, 2, 123–134 (2017)

    Article  Google Scholar 

  25. Alvarez, J.M., LeCun, Y., Gevers, T., Lopez, A.M.: Semantic road segmentation via multi-scale ensembles of learned features. European conference on computer vision workshop, pp. 586–595 (2012)

  26. Yi, D., Lei, Z., Li, S.Z.: Age estimation by multi-scale convolutional network. Asian conference on computer vision, pp. 144–158 (2014)

  27. Jia, Y.C.: An open source convolutional architecture for fast feature embedding. http://caffe.berkeleyvision.org/ (2016)

Download references

Acknowledgements

This work is supported by Natural Science Foundation of China (61701280), Natural Science Foundation of Shandong Province (ZR2016FQ18, ZR2017QF009), National Basic Research Program of China (973 Program) under Grant 2014CB748600, National Science Fund for Outstanding Young Scholars (61622114), Natural Science Foundation of China (61573219, 81371629, 61671274, 61703235, 61701281), the Fostering Project of Dominant Discipline and Talent Team of Shandong Province Higher Education Institutions, Shandong Provincial Key Research and Development Plan (Grant no. 2017CXGC1504). The Fostering Project of Dominant Displine and Talent Team of SDUFE. The authors would like to greatly thank the editors and the reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yilong Yin or **njian Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 393 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**, X., Meng, X., Yang, L. et al. Automated segmentation of choroidal neovascularization in optical coherence tomography images using multi-scale convolutional neural networks with structure prior. Multimedia Systems 25, 95–102 (2019). https://doi.org/10.1007/s00530-017-0582-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-017-0582-5

Keywords

Navigation