Log in

Abstract

In this paper, we systematically study the heat kernel of the Ricci flows induced by Ricci shrinkers. We develop several estimates which are much sharper than their counterparts in general closed Ricci flows. Many classical results, including the optimal Logarithmic Sobolev constant estimate, the Sobolev constant estimate, the no-local-collapsing theorem, the pseudo-locality theorem and the strong maximum principle for curvature tensors, are essentially improved for Ricci flows induced by Ricci shrinkers. Our results provide many necessary tools to analyze short time singularities of the Ricci flows of general dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bakry, D.: L’hypercontractivité et son utilisation en théorie des semigroupes, Lectures on Probability Theory, Volume 1581 of Lecture Notes in Mathematics, pp. 1–114. Springer, Berlin (1994)

    MATH  Google Scholar 

  2. Bakry, D., Émery, M.: Diffusions hypercontractives. Séminaire de Probabilités, XIX 84, 177–206 (1983)

    MATH  Google Scholar 

  3. Bamler, R.H., Zhang, Q.S.: Heat kernel and curvature bounds in Ricci flows with bounded scalar curvature. Adv. Math. 319, 396–450 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Besse, A.L.: Einstein Manifolds, Classics in Mathematics. Springer, Berlin (2008)

    Google Scholar 

  5. Böhm, C., Wilking, B.: Manifolds with positive curvature operator are space forms. Ann. Math. 167, 1079–1097 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Cao, H.D.: Recent progress on Ricci solitons. Adv. Lect. Math. 11, 1–38 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Cao, H.D.: Geometry of complete gradient shrinking Ricci solitons. ar**v:0903.3927v1

  8. Cao, H.D., Chen, B.L., Zhu, X.P.: Recent Developments on Hamilton’s Ricci Flow Surveys in Differential Geometry, vol. VII, pp. 47–112. International Press, Somerville (2008)

    MATH  Google Scholar 

  9. Cao, H.D., Zhou, D.: On complete gradient shrinking Ricci solitons. J. Differ. Geom. 85(2), 175–186 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Carrillo, J., Ni, L.: Sharp logarithmic Sobolev inequalities on gradient solitons and applications. Commun. Anal. Geom. 17(4), 721–753 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Chau, A., Tam, L.F., Yu, C.J.: Pseudolocality for the Ricci flow and applications. Can. J. Math. 63(1), 55–85 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. I. J. Differ. Geom. 46(3), 406–480 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom. 17(1), 15–53 (1982)

    MathSciNet  MATH  Google Scholar 

  14. Cheeger, J., Naber, A.: Regularity of Einstein manifolds and the codimension 4 conjecture. Ann. Math. 182(3), 1093–1165 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Chen, B.L.: Strong uniqueness of the Ricci flow. J. Differ. Geom. 82(2), 363–382 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Cheng, S.Y., Li, P., Yau, S.T.: Heat equations on minimal submanifolds and their applications. Am. J. Math. 103(5), 1033–1065 (1984)

    MathSciNet  MATH  Google Scholar 

  17. Chow, B., Lu, P.: Uniqueness of asymptotic cones of complete noncompact shrinking gradient Ricci solitons with Ricci curvature decay. Comptes Rendus Mathematique 353(11), 1007–1009 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci Flow, Lecture in Contemporary Mathematics, 3, Science Press and Graduate Studies in Mathematics, vol. 77. American Mathematical Society, Providence (2006)

    Google Scholar 

  19. Chow, B., Chu, S.C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci Flow: Techniques And Applications, Part I–IV, Mathematical Surveys and Monographs, vol. 206. American Mathematical Society, Providence (2007)

    MATH  Google Scholar 

  20. Colding, T.H., Naber, A.: Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications. Ann. Math. 176(2), 1173–1229 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Davies, E.B.: Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  22. Grigor’yan, A.: Heat kernel and analysis on manifolds. AMS/IP Stud. Adv. Math. 47, 482 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2015)

    MATH  Google Scholar 

  24. Hamilton, R.S.: Four-manifolds with positive curvature operator. J. Differ. Geom. 24(2), 153–179 (1986)

    MathSciNet  MATH  Google Scholar 

  25. Hamilton, R.S.: The Formation of Singularities in Ricci Flow, Surveys in Differential Geometry, vol. II (Cambridge, MA, 1993), pp. 7–136. International Press, Cambridge (1995)

    Google Scholar 

  26. Hamilton, R.S.: Non-singular solutions to the Ricci flow on three manifolds. Commun. Anal. Geom. 1, 695–729 (1999)

    MathSciNet  MATH  Google Scholar 

  27. Haslhofer, R., Müller, R.: A compactness theorem for complete Ricci shrinkers. Geom. Funct. Anal. 21, 1091–1116 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Hein, H.J., Naber, A.: New logarithmic Sobolev inequalities and an \(\epsilon \)-regularity theorem for the Ricci flow. Commun. Pure Appl. Math. 67(9), 1543–1561 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Huang, S., Li, Y., Wang, B.: On the regular-convexity of Ricci shrinker limit spaces. ar**v:1809.04386

  30. Ivey, T.: Ricci solitons on compact three-manifolds. Differ. Geom. Appl. 3(4), 301–307 (1993)

    MathSciNet  MATH  Google Scholar 

  31. Jiang, W., Naber, A.: \(L^2\) curvature bounds on manifolds with bounded Ricci curvature. ar**v:1605.05583

  32. Kleiner, B., Lott, J.: Notes on Perelman’s papers. Geom. Topol. 12, 2587–2855 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Kotschwar, B., Wang, L.: Rigidity of asymptotically conical shrinking gradient Ricci solitons. J. Differ. Geom. 100(1), 55–108 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Li, H., Li, Y., Wang, B.: On the structure of Ricci shrinkers. ar**v:1809.04049

  35. Li, P.: Geometric Analysis, Cambridge Studies in Advanced Mathematics, vol. 134. Cambridge University Press, New York (2012)

    Google Scholar 

  36. Li, Y.: Ricci flow on asymptotically Euclidean manifolds. Geom. Topol. 22(3), 1837–1891 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Li, Y., Wang, B.: The rigidity of Ricci shrinkers of dimension four. ar**v:1701.01989, to appear in Transactions of the American Mathematical Society

  38. Li, P., Yau, S.T.: On the parabolic kernel of the Schrödinger operator. Acta. Math. 156(3–4), 153–201 (1986)

    MathSciNet  Google Scholar 

  39. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169(3), 903–991 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Munteanu, O., Sesum, N.: On gradient Ricci solitons. J. Geom. Anal. 23(2), 539–561 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Munteanu, O., Wang, J.: Analysis of weighted Laplacian and applications to Ricci solitons. Commun. Anal. Geom. 20(1), 55–94 (2012)

    MathSciNet  MATH  Google Scholar 

  42. Munteanu, O., Wang, J.: Positively curved shrinking Ricci solitons are compact. J. Differ. Geom. 106(3), 499–505 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Naber, A.: Noncompact shrinking four solitons with nonnegative curvature. J. Reine Angew. Math. 645, 125–153 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Ni, L.: A note on Perelman’s LYH-type inequality. Commun. Anal. Geom. 14(5), 883–905 (2006)

    MathSciNet  MATH  Google Scholar 

  45. Ni, L., Wallach, N.: On a classification of gradient shrinking solitons. Math. Res. Lett. 15(5), 941–955 (2010)

    MathSciNet  MATH  Google Scholar 

  46. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. ar**v:math.DG/0211159

  47. Petersen, P., Wylie, W.: On the classification of gradient Ricci solitons. Geom. Topol. 14(4), 2277–2300 (2010)

    MathSciNet  MATH  Google Scholar 

  48. Rothaus, O.S.: Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators. J. Funct. Anal. 42(1), 110–120 (1981)

    MATH  Google Scholar 

  49. Shi, W.X.: Deforming the metric on complete Riemannian manifolds. J. Differ. Geom. 30(2), 223–301 (1989)

    MathSciNet  MATH  Google Scholar 

  50. Shi, W.X.: Ricci deformation of the metric on complete noncompact Riemannian manifolds. J. Differ. Geom. 30(2), 303–394 (1989)

    MathSciNet  MATH  Google Scholar 

  51. Tian, G., Wang, B.: On the structure of almost Einstein manifolds. J. Am. Math. Soc. 28(4), 1169–1209 (2015)

    MathSciNet  MATH  Google Scholar 

  52. Villani, C.: Optimal Transport, Old and New, Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer, Berlin (2008)

    Google Scholar 

  53. Wang, B.: The local entropy along Ricci flow—part a: the no-local-collapsing theorems. Camb. J. Math. 6(3), 267–346 (2018)

    MathSciNet  MATH  Google Scholar 

  54. Wang, B.: The local entropy along Ricci flow—part b: the pseudo-locality theorems, preprint

  55. Wei, G., Wylie, W.: Comparison geometry for the Bakry–Émery Ricci tensor. J. Differ. Geom. 83(2), 377–405 (2009)

    MATH  Google Scholar 

  56. Ye, R.: Notes on the Reduced Volume and Asymptotic Ricci Solitons of \(\kappa \)-Solutions. http://www.math.lsa.umich.edu/research/ricciflow/perelman.html

  57. Yokota, T.: Perelman’s reduced volume and a gap theorem for the Ricci flow. Commun. Anal. Geom. 17(2), 227–263 (2009)

    MathSciNet  MATH  Google Scholar 

  58. Yokota, T.: Addendum to ‘Perelman’s reduced volume and a gap theorem for the Ricci flow’. Commun. Anal. Geom. 20(5), 949–955 (2012)

    MATH  Google Scholar 

  59. Yau, S.T.: Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry. Indiana Univ. Math. J. 25(7), 659–670 (1976)

    MathSciNet  MATH  Google Scholar 

  60. Zhang, Q.S.: Some gradient estimates for the heat equation on domains and for an equation by Perelman. Int. Math. Res. Not. 2006, 1 (2006)

    MathSciNet  Google Scholar 

  61. Zhang, Q.S.: Bounds on volume growth of geodesic balls under Ricci flow. Math. Res. Lett. 19(1), 245–253 (2012)

    MathSciNet  MATH  Google Scholar 

  62. Zhang, Q.S.: Extremal of Log Sobolev inequality and W entropy on noncompact manifolds. J. Funct. Anal. 263(7), 2051–2101 (2012)

    MathSciNet  MATH  Google Scholar 

  63. Zhang, Z.: Degeneration of shrinking Ricci solitons. Int. Math. Res. Not. 21, 4137–4158 (2010)

    MathSciNet  MATH  Google Scholar 

  64. Zhu, S.H.: The comparison geometry of Ricci curvature. Comp. Geom. MSRI Publications 30, 221–262 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Yu Li would like to thank Jiyuan Han and Shaosai Huang for helpful comments. Bing Wang would like to thank Haozhao Li and Lu Wang for their interests in this work. Part of this work was done while both authors were visiting IMS (Institute of Mathematical Sciences) at ShanghaiTech University during the summer of 2018. They wish to thank IMS for its hospitality. Last but not least, the authors would like to thank the anonymous referees for several valuable comments that help improve the exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Li.

Additional information

Communicated by A. Neves.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yu Li is partially supported by research fund from SUNY Stony Brook and Bing Wang is partially supported by NSF Grant DMS-1510401 and research funds from USTC and UW-Madison.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, B. Heat kernel on Ricci shrinkers. Calc. Var. 59, 194 (2020). https://doi.org/10.1007/s00526-020-01861-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01861-y

Mathematics Subject Classification

Navigation