Log in

The von Kármán theory for incompressible elastic shells

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We rigorously derive the von Kármán shell theory for incompressible materials, starting from the 3D nonlinear elasticity. In case of thin plates, the Euler-Lagrange equations of the limiting energy functional reduce to the incompressible version of the classical von Kármán equations, obtained formally in the limit of Poisson’s ratio ν → 1/2. More generally, the midsurface of the shell to which our analysis applies, is only assumed to have the following approximation property: \({\mathcal C^3}\) first order infinitesimal isometries are dense in the space of all W 2,2 infinitesimal isometries. The class of surfaces with this property includes: subsets of \({\mathbb R^2}\), convex surfaces, developable surfaces and rotationally invariant surfaces. Our analysis relies on the methods and extends the results of Conti and Dolzmann (Calc Var PDE 34:531–551, 2009, Lewicka et al. (Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) Vol. IX:253–295, 2010, Friesecke et al. (Comm. Pure. Appl. Math. 55, no. 2, 1461–1506, 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourquin F., Ciarlet P.G., Geymonat G., Raoult A.: Gamma-convergence for the asymptotic theory of plates. C. R. Acad. Sci. Paris Ser. I 315, 1017–1024 (1992)

    MathSciNet  MATH  Google Scholar 

  2. Chapelle D., Mardare C., Münch A.: Asymptotic considerations shedding light on incompressible shell models. J Elast 76, 199–246 (2004)

    Article  MATH  Google Scholar 

  3. Ciarlet PG.: Mathematical Elasticity. North-Holland, Amsterdam (2000)

    MATH  Google Scholar 

  4. Conti, S., Dolzmann, G.: Derivation of Elastic Theories for Thin Sheets and the Constraint of Incompressibility. Analysis, Modeling and Simulation of Multiscale Problems. pp 225–247. Springer, Berlin (2006)

  5. Conti S., Dolzmann G.: Derivation of a plate theory for incompressible materials. C.R. Math. Acad. Sci. Paris 344(8), 541–544 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Conti S., Dolzmann G.: Gamma-convergence for incompressible elastic plates. Calc. Var. PDE 34, 531–551 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Conti S., Maggi F.: Confining thin sheets and folding paper. Arch. Ration. Mech. Anal 187(1), 1–48 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dervaux J., Ben Amar M.: Morphogenesis of growing soft tissues. Phys. Rev. Lett 101, 068101–068104 (2008)

    Article  Google Scholar 

  9. Dal Maso G.: An Introduction to Gamma-Convergence. Birkhäuser Boston Inc., Boston (1993)

    Book  Google Scholar 

  10. De Giorgi E., Franzoni T.: Su un tipo di convergenza variazionale. (Italian) Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur (8) 58(6), 842–850 (1975)

    MathSciNet  MATH  Google Scholar 

  11. Friesecke G., James R., Müller S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Comm. Pure. Appl. Math 55(2), 1461–1506 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Friesecke G., James R., Müller S.: A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence. Arch. Ration. Mech. Anal 180(2), 183–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Friesecke G., James R., Mora M.G., Müller S.: Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence. C. R. Math. Acad. Sci. Paris 336(8), 697–702 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Geymonat G., Krasucki F., Marigo J.J.: Sur la commutativité des passages à à la limite en thoréie asymptotique des poutres composites. C. R. Acad. Sci. Paris Ser. II t. 305, 225–228 (1987)

    MathSciNet  Google Scholar 

  15. Hornung, P., Lewicka M., Pakzad, M.: The matching property for isometries on developable surfaces and elasticity of thin shells. J. Elast. (10 May 2012). doi:10.1007/s10659-012-9391-4.

  16. LeDret H., Raoult A.: The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl 73, 549–578 (1995)

    MathSciNet  Google Scholar 

  17. LeDret H., Raoult A.: The membrane shell model in nonlinear elasticity: a variational asymptotic derivation. J. Nonlinear Sci 6, 59–84 (1996)

    Article  MathSciNet  Google Scholar 

  18. Lewicka, M.: Reduced theories in nonlinear elasticity. Nonlinear Conservation Laws and Applications. IMA vol. 153, pp 393–403, Springer (2011)

  19. Lewicka M.: A note on the convergence of low energy critical points of nonlinear elasticity functionals, for thin shells of arbitrary geometry. ESAIM. Control Optim. Calc. Var 17, 493–505 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lewicka M., Mahadevan L., Pakzad M.R.: The Föppl–von Kármán equations for plates with incompatible strains. Proc. R. Soc. A 467, 402–426 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lewicka M., Mora M.G., Pakzad M.: Shell theories arising as low energy Gamma-limit of 3D nonlinear elasticity. Ann. Scuola Norm. Sup. Pisa Cl. Sci IX 5, 253–295 (2010)

    MathSciNet  Google Scholar 

  22. Lewicka M., Mora M.G., Pakzad M.: A nonlinear theory for shells with slowly varying thickness. C.R. Acad. Sci. Paris Sér. I 347, 211–216 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lewicka M., Mora M.G., Pakzad M.: The matching property of infinitesimal isometries on elliptic surfaces and elasticity of thin shells. Arch. Ration. Mech. Anal 200(3), 1023–1050 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lewicka M., Müller S.: The uniform Korn–Poincaré inequality in thin domains. Ann. Inst. Henri Poincaré (C) 28(3), 443–469 (2011)

    Article  MATH  Google Scholar 

  25. Lewicka, M., Pakzad, M.: The infinite hierarchy of elastic shell models: some recent results and a conjecture. Fields Inst. Commun. (accepted). http://www.math.pitt.edu/~lewicka/publications.html

  26. Li, H.: A note on the von Kármán theory for elastic shells with variable thickness. Acta Math. Appl. Sin. (accepted). http://math.umn.edu/~lixxx609/

  27. Love A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

  28. Mora M.G., Scardia L.: Convergence of equilibria of thin elastic plates under physical growth conditions for the energy density. J. Differ. Equ. 252, 35–55 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Müller S., Pakzad M.R.: Convergence of equilibria of thin elastic plates: the von Kármán case. Comm. Partial. Differ. Equ 33, 1018–1032 (2008)

    Article  MATH  Google Scholar 

  30. Trabelsi K.: Incompressible nonlinearly elastic thin membranes. C. R. Acad. Sci. Paris Ser. I 340, 75–80 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Trabelsi K.: Modeling of a membrane for nonlinearly elastic incompressible materials via Gamma- convergence. Anal. Appl. (Singap.) 4(1), 31–60 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Walter W.: Ordinary Differential Equations. Springer, New York (1998)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li.

Additional information

Communicated by J. Ball.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Chermisi, M. The von Kármán theory for incompressible elastic shells. Calc. Var. 48, 185–209 (2013). https://doi.org/10.1007/s00526-012-0549-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0549-5

Mathematics Subject Classification (2000)

Navigation