Log in

On the entire self-shrinking solutions to Lagrangian mean curvature flow

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The authors prove that the logarithmic Monge–Ampère flow with uniformly bound and convex initial data satisfies uniform decay estimates away from time t = 0. Then applying the decay estimates, we conclude that every entire classical strictly convex solution of the equation

$$ \det D^{2}u=\exp\left\{n\left(-u+\frac{1}{2} \sum_{i=1}^{n}x_{i} \frac{\partial u}{\partial x_{i}} \right)\right\}, $$

should be a quadratic polynomial if the inferior limit of the smallest eigenvalue of the function |x|2 D 2 u at infinity has an uniform positive lower bound larger than 2(1 − 1/n). Using a similar method, we can prove that every classical convex or concave solution of the equation

$$ \sum_{i=1}^{n} \arctan\lambda_{i}=-u+\frac{1}{2} \sum_{i=1}^{n}x_{i} \frac{\partial u}{\partial x_{i}} $$

must be a quadratic polynomial, where λ i are the eigenvalues of the Hessian D 2 u.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao J.G., Chen J.Y., Guan B., ** M.: Liouville property and regularity of a Hessian quotient equation. Am. J. Math. 125, 301–316 (2003)

    Article  MATH  Google Scholar 

  2. Caffarelli L., Li Y.Y.: An extension to a theorem of Jörgens, Calabi, and Pogorelov. Commun. Pure Appl. Math. 56, 549–583 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caffarelli L., Nirenberg L., Spruck J.: The Dirichlet problem for nonlinear second-order elliptic equations I. Monge-ampere equation. Commun. Pure Appl. Math. 37, 369–402 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calabi E.: Improper affine hypersurfaces of convex type and a generalization of a theorem by K. Jörgens. Michigan Math. J. 5, 105–126 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chau, A., Chen, J.Y., He, W.Y.: Lagrangian mean curvature flow for entire lipschitz graphs. ar**v: 0902.3300

  6. Chau, A., Chen, J.Y., He, W.Y.: Entire self-similar solutions to Lagrangian mean curvature flow. ar**v: 0905.3869

  7. Colding, T.H., Minicozzi, W.P.: Generic mean curvature flow I; generic singularities. ar**v: 0908.3788

  8. Giga Y., Goto S., Ishii H., Sato M.H.: Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains. Indiana. Univ. Math. J. 40, 443–470 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, 2 edn. Grundlehren der Mathematischen Wissenschaften, 224, Springer-Verlag, Berlin (1998)

  10. Groh K., Schwarz M., Smoczyk K., Zehmisch K.: Mean curvature flow of monotone Lagrangian submanifolds. Math. Z. 257, 295–327 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harvey R., Lawson H.B.: Calibrated geometry. Acta Math. 148, 47–157 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, R.L.: Lagrangian mean Ccrvature flow In pseudo-Euclidean Space, prepint

  13. Huang, R.L., Bao, J.G.: The blow up analysis of the general curve shortening flow. ar**v:0908.2036

  14. Jörgens K.: ber die Lösungen der Differentialgleichung rt-s 2 = 1. Math. Ann. 127, 130–134 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jost J., **n Y.L.: Some aspects of the global geometry of entire space-like submanifolds. Results Math. 40, 233–245 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Li, A.M., Xu, R.W.: A rigidity theorem for an affine Kähler-Ricci flat graph. Result. Math. (2009), pp. 1–24

  17. Nitsche J.C.C.: Elementary proof of Bernstein’s theorem on minimal surfaces. Ann. Math. 66, 543–544 (1957)

    Article  MathSciNet  Google Scholar 

  18. Pogorelov A.V.: On the improper convex affine hyperspheres. Geom. Dedi. 1, 33–46 (1972)

    MathSciNet  MATH  Google Scholar 

  19. Smoczyk K., Wang M.T.: Mean curvature flows of Lagrangian submanifolds with convex potentials. J. Diff. Geom. 62, 243–257 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Tso K.S.: On a real Monge-Ampere functional. Invent. Math. 101, 425–448 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yuan Y.: A Bernstein problem for special Lagrange equations. Invent. Math. 150, 117–125 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhizhang Wang.

Additional information

Communicated by J. Jost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, R., Wang, Z. On the entire self-shrinking solutions to Lagrangian mean curvature flow. Calc. Var. 41, 321–339 (2011). https://doi.org/10.1007/s00526-010-0364-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-010-0364-9

Mathematics Subject Classification (2000)

Navigation