Log in

RUTOD: real-time urban traffic outlier detection on streaming trajectory

  • S.I. : Deep Geospatial Data Understanding
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

With the rapid development of internet technology and mobile devices, massive streaming data of spatiotemporal information is available for real-time data mining. Outlier detection is playing as one of the most important analysis tasks for trajectory stream processing, such as traffic control and urban planning. Existing work about this issue can be divided into two main categories: individual outlier detection (IOD) and group outlier detection (GOD). IOD focuses on detecting an individual trajectory outlier generated by a single moving object (e.g., an over-speeding car), while GOD aims to detect a group outlier generated by various moving objects (e.g., a group of cars influenced by a traffic jam). However, existing studies only support one of them and cannot comprehensively understand the traffic conditions by combining both of them. To this end, we propose a novel framework for real-time urban traffic outlier detection (RUTOD) in this paper. RUTOD contains IOD based on current traffic conditions and GOD according to historical data. In addition, we adopt a street-based trajectory division to accelerate investigation. Experimental results show that our proposal is not only effective but also efficient for detecting both individual outliers and group outliers in real-time scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. https://github.com/apache/flink.

  2. https://outreach.didichuxing.com/research/opendata/.

References

  1. Apache Flink. https://flink.apache.org

  2. Aggarwal CC, Yu PS (2001) Outlier detection for high dimensional data. In: SIGMOD, pp 37–46

  3. Barnett V, Lewis T (1984) Outliers in statistical data. In: Wiley series in probability and mathematical statistics, 2nd edn. Applied Probability and Statistics. Wiley, Chichester

    Google Scholar 

  4. Breunig MM, Kriegel H, Ng RT, Sander J (2000) LOF: identifying density-based local outliers. In: SIGMOD, pp 93–104. ACM

  5. Bu Y, Chen L, Fu AW, Liu D (2009) Efficient anomaly monitoring over moving object trajectory streams. In: SIGKDD, pp 159–168. ACM

  6. Chawla S, Zheng Y, Hu J (2012) Inferring the root cause in road traffic anomalies. In: ICDM, pp 141–150. IEEE

  7. Chen L, Shang S, Jensen CS, Xu J, Kalnis P, Yao B, Shao L (2020) Top-k term publish/subscribe for geo-textual data streams. VLDB J 29:1101–1128

    Article  Google Scholar 

  8. Chen L, Shang S, Yang C, Li J (2020) Spatial keyword search: a survey. GeoInformatica 24(1):85–106

    Article  Google Scholar 

  9. Chen L, Shang S, Zhang Z, Cao X, Jensen CS, Kalnis P (2018) Location-aware top-k term publish/subscribe. In: 2018 IEEE 34th international conference on data engineering (ICDE), pp 749–760. IEEE

  10. Chen X, Xu J, Zhou R, Chen W, Fang J, Liu C (2021) Trajvae: a variational autoencoder model for trajectory generation. Neurocomputing 428:332–339

    Article  Google Scholar 

  11. Chen X, Xu J, Zhou R, Zhao P, Liu C, Fang J, Zhao L (2020) S2 r-tree: a pivot-based indexing structure for semantic-aware spatial keyword search. GeoInformatica 24(1):3–25

    Article  Google Scholar 

  12. Dang TT, Ngan HYT, Liu W (2015) Distance-based k-nearest neighbors outlier detection method in large-scale traffic data. In: DSP, pp 507–510. IEEE

  13. Djenouri Y, Zimek A, Chiarandini M (2018) Outlier detection in urban traffic flow distributions. In: ICDM, pp 935–940. IEEE

  14. Johnson T, Kwok I, Ng RT (1998) Fast computation of 2-dimensional depth contours. In: KDD, pp 224–228

  15. Knorr EM, Ng RT (1998) Algorithms for mining distance-based outliers in large datasets. In: PVLDB, pp 392–403

  16. Knorr EM, Ng RT (1999) Finding intensional knowledge of distance-based outliers. In: Atkinson MP, Orlowska ME, Valduriez P, Zdonik SB, Brodie ML (eds) VLDB. Morgan Kaufmann, Burlington, pp 211–222

    Google Scholar 

  17. Knorr EM, Ng RT, Tucakov V (2000) Distance-based outliers: algorithms and applications. VLDB J 8(3–4):237–253

    Article  Google Scholar 

  18. Lam P, Wang L, Ngan HYT, Yung NHC, Yeh AG (2015) Outlier detection in large-scale traffic data by Naïve Bayes method and gaussian mixture model method. CoRR ar**v:abs/1512.08413

  19. Lee J, Han J, Li X (2008) Trajectory outlier detection: a partition-and-detect framework. In: ICDE, pp 140–149. IEEE

  20. Lee J, Han J, Whang K (2007) Trajectory clustering: a partition-and-group framework. In: SIGMOD, pp 593–604. ACM

  21. Lei P (2016) A framework for anomaly detection in maritime trajectory behavior. KIS 47(1):189–214

    Google Scholar 

  22. Li X, Han J, Kim S, Gonzalez H (2007) ROAM: rule- and motif-based anomaly detection in massive moving object data sets. In: SIAM, pp 273–284. SIAM

  23. Liu A, Wang W, Shang S, Li Q, Zhang X (2018) Efficient task assignment in spatial crowdsourcing with worker and task privacy protection. GeoInformatica 22(2):335–362

    Article  Google Scholar 

  24. Liu J, Zhao K, Sommer P, Shang S, Kusy B, Lee JG, Jurdak R (2016) A novel framework for online amnesic trajectory compression in resource-constrained environments. IEEE Trans Knowl Data Eng 28(11):2827–2841

    Article  Google Scholar 

  25. Liu W, Zheng Y, Chawla S, Yuan J, **-based outlier detection upon streaming trajectories. TKDE 29(12):2696–2709

    Google Scholar 

  26. Ngan HY, Yung NH, Yeh AG (2015) Outlier detection in traffic data based on the Dirichlet process mixture model. IET 9(7):773–781

    Google Scholar 

  27. Pang LX, Chawla S, Liu W, Zheng Y (2011) On mining anomalous patterns in road traffic streams. In: Tang J, King I, Chen L, Wang J (eds) ADMA, vol 7121. Springer, Berlin, pp 237–251

    Google Scholar 

  28. Papadimitriou S, Kitagawa H, Gibbons PB, Faloutsos C (2003) LOCI: fast outlier detection using the local correlation integral. In: ICDE, pp 315–326. IEEE

  29. Ramaswamy S, Rastogi R, Shim K (2000) Efficient algorithms for mining outliers from large data sets. In: SIGMOD, pp 427–438. ACM

  30. Shang S, Chen L, Jensen CS, Wen JR, Kalnis P (2017) Searching trajectories by regions of interest. IEEE Trans Knowl Data Eng 29(7):1549–1562

    Article  Google Scholar 

  31. Shang S, Chen L, Wei Z, Jensen CS, Wen JR, Kalnis P (2015) Collective travel planning in spatial networks. IEEE Trans Knowl Data Eng 28(5):1132–1146

    Article  Google Scholar 

  32. Shang S, Chen L, Wei Z, Jensen CS, Zheng K, Kalnis P (2018) Parallel trajectory similarity joins in spatial networks. VLDB J 27(3):395–420

    Article  Google Scholar 

  33. Shang S, Ding R, Zheng K, Jensen CS, Kalnis P, Zhou X (2014) Personalized trajectory matching in spatial networks. VLDB J 23(3):449–468

    Article  Google Scholar 

  34. Song X, Xu J, Zhou R, Liu C, Zheng K, Zhao P, Falkner N (2020) Collective spatial keyword search on activity trajectories. GeoInformatica 24(1):61–84

    Article  Google Scholar 

  35. Tang J, Ngan HY (2016) Traffic outlier detection by density-based bounded local outlier factors. Inf Technol Ind 4(1):6

    Google Scholar 

  36. Wu H, Sun W, Zheng B (2017) A fast trajectory outlier detection approach via driving behavior modeling. In: CIKM, pp 837–846. ACM

  37. Xu J, Chen J, Zhou R, Fang J, Liu C (2019) On workflow aware location-based service composition for personal trip planning. Future Gener Comput Syst 98:274–285

    Article  Google Scholar 

  38. Xu J, Gao Y, Liu C, Zhao L, Ding Z (2015) Efficient route search on hierarchical dynamic road networks. Distrib Parallel Databases 33(2):227–252

    Article  Google Scholar 

  39. Xu J, Zhao J, Zhou R, Liu C, Zhao P, Zhao L (2021) Predicting destinations by a deep learning based approach. IEEE Trans Knowl Data Eng 33(2):651–666

    Article  Google Scholar 

  40. Xu S, Zhang R, Cheng W, Xu J (2020) Mtlm: a multi-task learning model for travel time estimation. GeoInformatica 1–17. https://doi.org/10.1007/s10707-020-00422-x

  41. Yang W, Gao Y, Cao L (2013) TRASMIL: a local anomaly detection framework based on trajectory segmentation and multi-instance learning. CVIU 117(10):1273–1286

    Google Scholar 

  42. Yu Y, Cao L, Rundensteiner EA, Wang Q (2014) Detecting moving object outliers in massive-scale trajectory streams. In: SIGKDD, pp 422–431

  43. Zheng Y (2015) Trajectory data mining: an overview. ACM Trans Intell Syst Technol 6(3):29:1-29:41

    Article  Google Scholar 

  44. Zhou X, Ding Y, Peng F, Luo Q, Ni LM (2017) Detecting unmetered taxi rides from trajectory data. In: Big Data, pp 530–535. IEEE Computer Society

  45. Zhu J, Jiang W, Liu A, Liu G, Zhao L (2015) Time-dependent popular routes based trajectory outlier detection. In: WISE, vol 9418, pp 16–30. Springer

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under grant (No. 61802273), Postdoctoral Science Foundation of China (No. 2020M681529).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juntian Shi.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Pan, Z., Fang, J. et al. RUTOD: real-time urban traffic outlier detection on streaming trajectory. Neural Comput & Applic 35, 3625–3637 (2023). https://doi.org/10.1007/s00521-021-06294-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06294-y

Keywords

Navigation