Log in

Research on computer vision enhancement in intelligent robot based on machine learning and deep learning

  • S.I: Cognitive-inspired Computing and Applications
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The stable operation of intelligent robots requires the effective support of machine vision technology. In order to improve the effect of robot machine vision recognition, based on deep learning, this paper, under the guidance of machine learning ideas, proposes a target detection framework that combines target recognition and target tracking based on the efficiency advantages of the KCF visual tracking algorithm. Moreover, this paper designs a vision system based on a high-resolution color camera and TOF depth camera. In addition, by modeling the coordinate conversion relationship of the same object in the camera coordinate system of two cameras, the projection relationship of the depth map collected by the TOF camera to the pixel coordinate system of the high-resolution color camera is determined. In addition, this paper designs experiments to verify the performance of the model. The research results show that the method proposed in this paper has a certain effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ghosal S, Blystone D, Singh AK et al (2018) An explainable deep machine vision framework for plant stress phenoty**[J]. Proc Natl Acad Sci 115(18):4613–4618

    Article  Google Scholar 

  2. Sitthi-Amorn P, Ramos JE, Wangy Y et al (2015) MultiFab: a machine vision assisted platform for multi-material 3D printing[J]. Acm Trans Gr (Tog) 34(4):1–11

    Article  Google Scholar 

  3. Robie AA, Seagraves KM, Egnor SER et al (2017) Machine vision methods for analyzing social interactions[J]. J Exp Biol 220(1):25–34

    Article  Google Scholar 

  4. Aytekin Ç, Rezaeitabar Y, Dogru S et al (2015) Railway fastener inspection by real-time machine vision[J]. IEEE Trans Syst Man Cybern Syst 45(7):1101–1107

    Article  Google Scholar 

  5. Xu Y, Brownjohn JMW (2018) Review of machine-vision based methodologies for displacement measurement in civil structures[J]. J Civ Struct Health Monit 8(1):91–110

    Article  Google Scholar 

  6. Koch C, Paal SG, Rashidi A et al (2014) Achievements and challenges in machine vision-based inspection of large concrete structures[J]. Adv Struct Eng 17(3):303–318

    Article  Google Scholar 

  7. Habib MT, Majumder A, Jakaria AZM et al (2020) Machine vision based papaya disease recognition[J]. J King Saud Univ Comput Inform Sci 32(3):300–309

    Google Scholar 

  8. Yang Y, Miao C, Li X et al (2014) On-line conveyor belts inspection based on machine vision[J]. Optik 125(19):5803–5807

    Article  Google Scholar 

  9. Sun TH, Tien FC, Tien FC et al (2016) Automated thermal fuse inspection using machine vision and artificial neural networks[J]. J Intell Manuf 27(3):639–651

    Article  Google Scholar 

  10. Silwal A, Gongal A, Karkee M (2014) Apple identification in field environment with over the row machine vision system[J]. Agric Eng Int CIGR J 16(4):66–75

    Google Scholar 

  11. Longsheng F, Bin W, Yongjie C et al (2015) Kiwifruit recognition at nighttime using artificial lighting based on machine vision[J]. Int J Agric Biol Eng 8(4):52–59

    Google Scholar 

  12. Bo T, Jianyi K, Shiqian W (2017) Review of surface defect detection based on machine vision[J]. J Image Gr 22(12):1640–1663

    Google Scholar 

  13. Favret C, Sieracki JM (2016) Machine vision automated species identification scaled towards production levels[J]. Syst Entomol 41(1):133–143

    Article  Google Scholar 

  14. Xu R, Ng WC, Yuan J et al (2014) A 1/2.5 inch VGA 400 fps CMOS image sensor with high sensitivity for machine vision[J]. IEEE J Solid-State Circuits 49(10):2342–2351

    Article  Google Scholar 

  15. Zhang H, Li X, Zhong H et al (2018) Automated machine vision system for liquid particle inspection of pharmaceutical injection[J]. IEEE Trans Instrum Meas 67(6):1278–1297

    Article  Google Scholar 

  16. Yao B, Hagras H, Alhaddad MJ et al (2015) A fuzzy logic-based system for the automation of human behavior recognition using machine vision in intelligent environments[J]. Soft Comput 19(2):499–506

    Article  Google Scholar 

  17. Bianconi F, Ceccarelli L, Fernández A et al (2014) A sequential machine vision procedure for assessing paper impurities[J]. Comput Ind 65(2):325–332

    Article  Google Scholar 

  18. Nandi CS, Tudu B, Koley C (2016) A machine vision technique for grading of harvested mangoes based on maturity and quality[J]. IEEE Sens J 16(16):6387–6396

    Article  Google Scholar 

  19. Wang Y, Chen T, He Z et al (2015) Review on the machine vision measurement and control technology for intelligent manufacturing equipment[J]. Control Theory Appl 32(3):273–286

    Google Scholar 

  20. Chauhan V, Surgenor B (2017) Fault detection and classification in automated assembly machines using machine vision[J]. Int J Adv Manuf Technol 90(9–12):2491–2512

    Article  Google Scholar 

  21. ** Q, Rauschenbach T, Daoliang L (2017) Review of underwater machine vision technology and its applications[J]. Mar Technol Soc J 51(1):75–97

    Article  Google Scholar 

  22. Li M, Lv R, Huang S et al (2016) Electrochemical fabrication of silver tips for tip-enhanced Raman spectroscopy assisted by a machine vision system[J]. J Raman Spectrosc 47(7):808–812

    Article  Google Scholar 

  23. Naderiparizi S, Kapetanovic Z, Smith JR (2016) Battery-free connected machine vision with wispcam[J]. GetMobile Mobile Comput Commun 20(1):10–13

    Article  Google Scholar 

  24. Özlüoymak ÖB, Bolat A, Bayat A et al (2019) Design, development, and evaluation of a target oriented weed control system using machine vision[J]. Turkish J Agric For 43(2):164–173

    Article  Google Scholar 

  25. Lubana ES, Dick RP (2018) Digital foveation: An energy-aware machine vision framework[J]. IEEE Trans Comput Aided Des Integr Circuits Syst 37(11):2371–2380

    Article  Google Scholar 

  26. Lv S, Yang R, Huang C (2016) Contusion and recovery of individual cognitive based on catastrophe theory: a computational model[J]. Neurocomputing 220:210–220

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisha Hua.

Ethics declarations

Conflict of interest

The authors have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Hua, L. & Li, S. Research on computer vision enhancement in intelligent robot based on machine learning and deep learning. Neural Comput & Applic 34, 2623–2635 (2022). https://doi.org/10.1007/s00521-021-05898-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-05898-8

Keywords

Navigation