Log in

Continuous enteral administration can overcome the limited capacity to absorb glucose in rats with methotrexate-induced gastrointestinal mucositis

  • Original Article
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

Background

Patients with chemotherapy-induced gastrointestinal mucositis often suffer from weight loss. It is not well known how to enterally feed mucositis patients, potentially experiencing malabsorption. Recently, we showed in a rat model of methotrexate (MTX)-induced mucositis that intestinal absorption of glucose in trace amounts is still intact. We now determined the quantitative capacity to absorb glucose in rats with mucositis, relative to controls.

Methods

We administered a physiologically relevant amount of [1-13C]glucose-enriched glucose (meal size) as a bolus by oral gavage (2 g/kg once) or continuously by intraduodenal infusion (±1.9 g/(kg·h) for 5 h) to rats with MTX-induced mucositis and controls. Blood [1-13C]glucose concentrations were determined during the experimental period. To calculate the quantitative absorptive capacity, Steele’s one-compartment model, including simultaneous intravenous infusion of [6,6-2H2]glucose, was used. After the experiment, jejunal histology and plasma citrulline concentrations were assessed.

Results

MTX-induced mucositis was confirmed by a reduction in villus length and plasma citrulline (both −57 %, relative to controls, P < 0.01). When glucose was administered as a bolus, MTX-treated rats only absorbed 15 % of administered glucose, compared with 85 % in controls (medians, P < 0.01). Upon continuous intraduodenal glucose infusion, the median absorptive capacity for glucose in MTX-treated rats did not differ from controls (80 versus 93 % of administered glucose respectively, P = 0.06). However, glucose absorption differed substantially between individual MTX-treated rats (range, 21–95 %), which correlated poorly with villus length (rho = 0.54, P = 0.030) and plasma citrulline (rho = 0.56, P = 0.024).

Conclusion

Continuous enteral administration can almost completely overcome the reduced absorptive capacity for glucose in rats with mucositis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Moe PJ, Holen A (2000) High-dose methotrexate in childhood all. Pediatr Hematol Oncol 17:615–622

    Article  PubMed  CAS  Google Scholar 

  2. Sonis ST, Elting LS, Keefe D, Peterson DE, Schubert M, Hauer-Jensen M, Bekele BN, Raber-Durlacher J, Donnelly JP, Rubenstein EB (2004) Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer 100:1995–2025

    Article  PubMed  Google Scholar 

  3. Keefe DM, Schubert MM, Elting LS, Sonis ST, Epstein JB, Raber-Durlacher JE, Migliorati CA, McGuire DB, Hutchins RD, Peterson DE (2007) Updated clinical practice guidelines for the prevention and treatment of mucositis. Cancer 109:820–831

    Article  PubMed  CAS  Google Scholar 

  4. van Vliet MJ, Tissing WJ, Rings EH, Koetse HA, Stellaard F, Kamps WA, de Bont ES (2009) Citrulline as a marker for chemotherapy induced mucosal barrier injury in pediatric patients. Pediatr Blood Cancer 53:1188–1194

    Article  PubMed  Google Scholar 

  5. Crenn P, Vahedi K, Lavergne-Slove A, Cynober L, Matuchansky C, Messing B (2003) Plasma citrulline: a marker of enterocyte mass in villous atrophy-associated small bowel disease. Gastroenterology 124:1210–1219

    Article  PubMed  CAS  Google Scholar 

  6. Fijlstra M, Rings EH, Verkade HJ, van Dijk TH, Kamps WA, Tissing WJ (2011) Lactose maldigestion during methotrexate-induced gastrointestinal mucositis in a rat model. Am J Physiol Gastrointest Liver Physiol 300:G283–G291

    Article  PubMed  CAS  Google Scholar 

  7. Blijlevens NM, Lutgens LC, Schattenberg AV, Donnelly JP (2004) Citrulline: a potentially simple quantitative marker of intestinal epithelial damage following myeloablative therapy. Bone Marrow Transplant 34:193–196

    Article  PubMed  CAS  Google Scholar 

  8. Barr J, Hecht M, Flavin KE, Khorana A, Gould MK (2004) Outcomes in critically ill patients before and after the implementation of an evidence-based nutritional management protocol. Chest 125:1446–1457

    Article  PubMed  Google Scholar 

  9. Lange BJ, Gerbing RB, Feusner J, Skolnik J, Sacks N, Smith FO, Alonzo TA (2005) Mortality in overweight and underweight children with acute myeloid leukemia. JAMA 293:203–211

    Article  PubMed  CAS  Google Scholar 

  10. Picton SV (1998) Aspects of altered metabolism in children with cancer. Int J Cancer Suppl 11:62–64

    Article  PubMed  CAS  Google Scholar 

  11. Sala A, Pencharz P, Barr RD (2004) Children, cancer, and nutrition—a dynamic triangle in review. Cancer 100:677–687

    Article  PubMed  Google Scholar 

  12. Jeejeebhoy KN (2006) Management of short bowel syndrome: avoidance of total parenteral nutrition. Gastroenterology 130:S60–S66

    Article  PubMed  CAS  Google Scholar 

  13. Olieman JF, Penning C, Ijsselstijn H, Escher JC, Joosten KF, Hulst JM, Tibboel D (2010) Enteral nutrition in children with short-bowel syndrome: current evidence and recommendations for the clinician. J Am Diet Assoc 110:420–426

    Article  PubMed  Google Scholar 

  14. Anonymous (1991) Perioperative total parenteral nutrition in surgical patients. The Veterans Affairs Total Parenteral Nutrition Cooperative Study Group. N Engl J Med 325:525–532

    Article  Google Scholar 

  15. DiBaise JK, Young RJ, Vanderhoof JA (2004) Intestinal rehabilitation and the short bowel syndrome: part 2. Am J Gastroenterol 99:1823–1832

    Article  PubMed  Google Scholar 

  16. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    PubMed  CAS  Google Scholar 

  17. Kuipers F, Havinga R, Bosschieter H, Toorop GP, Hindriks FR, Vonk RJ (1985) Enterohepatic circulation in the rat. Gastroenterology 88:403–411

    PubMed  CAS  Google Scholar 

  18. van Dijk TH, Grefhorst A, Oosterveer MH, Bloks VW, Staels B, Reijngoud DJ, Kuipers F (2009) An increased flux through the glucose 6-phosphate pool in enterocytes delays glucose absorption in Fxr−/− mice. J Biol Chem 284:10315–10323

    Article  PubMed  Google Scholar 

  19. Wielinga PY, Wachters-Hagedoorn RE, Bouter B, van Dijk TH, Stellaard F, Nieuwenhuizen AG, Verkade HJ, Scheurink AJ (2005) Hydroxycitric acid delays intestinal glucose absorption in rats. Am J Physiol Gastrointest Liver Physiol 288:G1144–G1149

    Article  PubMed  CAS  Google Scholar 

  20. van Eijk HM, Rooyakkers DR, Deutz NE (1993) Rapid routine determination of amino acids in plasma by high-performance liquid chromatography with a 2–3 microns Spherisorb ODS II column. J Chromatogr 620:143–148

    Article  PubMed  Google Scholar 

  21. van Dijk TH, Boer TS, Havinga R, Stellaard F, Kuipers F, Reijngoud DJ (2003) Quantification of hepatic carbohydrate metabolism in conscious mice using serial blood and urine spots. Anal Biochem 322:1–13

    Article  PubMed  Google Scholar 

  22. Debodo RC, Steele R, Altszuler N, Dunn A, Bishop JS (1963) On the hormonal regulation of carbohydrate metabolism: studies with C14 glucose. Recent Prog Horm Res 19:445–488

    PubMed  CAS  Google Scholar 

  23. Steele R, Wall JS, Debodo RC, Altszulerin N (1956) Measurement of size and turnover rate of body glucose pool by the isotope dilution method. Am J Physiol 187:15–24

    PubMed  CAS  Google Scholar 

  24. Tissot S, Normand S, Guilluy R, Pachiaudi C, Beylot M, Laville M, Cohen R, Mornex R, Riou JP (1990) Use of a new gas chromatograph isotope ratio mass spectrometer to trace exogenous 13C labelled glucose at a very low level of enrichment in man. Diabetologia 33:449–456

    Article  PubMed  CAS  Google Scholar 

  25. Boukhettala N, Leblond J, Claeyssens S, Faure M, Le PF, Bole-Feysot C, Hassan A, Mettraux C, Vuichoud J, Lavoinne A, Breuille D, Dechelotte P, Coeffier M (2009) Methotrexate induces intestinal mucositis and alters gut protein metabolism independently of reduced food intake. Am J Physiol Endocrinol Metab 296:E182–E190

    Article  PubMed  CAS  Google Scholar 

  26. de Koning BA, Lindenbergh-Kortleve DJ, Pieters R, Rings EH, Buller HA, Renes IB, Einerhand AW (2006) The effect of cytostatic drug treatment on intestine-specific transcription factors Cdx2, GATA-4 and HNF-1alpha in mice. Cancer Chemother Pharmacol 57:801–810

    Article  PubMed  Google Scholar 

  27. Lindsay RJ, Geier MS, Yazbeck R, Butler RN, Howarth GS (2010) Orally administered emu oil decreases acute inflammation and alters selected small intestinal parameters in a rat model of mucositis. Br J Nutr 104:513–519

    Google Scholar 

  28. Taminiau JA, Gall DG, Hamilton JR (1980) Response of the rat small-intestine epithelium to methotrexate. Gut 21:486–492

    Article  PubMed  CAS  Google Scholar 

  29. Tooley KL, Howarth GS, Lymn KA, Lawrence A, Butler RN (2006) Oral ingestion of streptococcus thermophilus diminishes severity of small intestinal mucositis in methotrexate treated rats. Cancer Biol Ther 5:593–600

    PubMed  CAS  Google Scholar 

  30. Verburg M, Renes IB, Van Nispen DJ, Ferdinandusse S, Jorritsma M, Buller HA, Einerhand AW, Dekker J (2002) Specific responses in rat small intestinal epithelial mRNA expression and protein levels during chemotherapeutic damage and regeneration. J Histochem Cytochem 50:1525–1536

    Article  PubMed  CAS  Google Scholar 

  31. Bartoli E, Fra GP, Carnevale Schianca GP (2011) The oral glucose tolerance test (OGTT) revisited. Eur J Intern Med 22:8–12

    Article  PubMed  CAS  Google Scholar 

  32. Pappenheimer JR (1993) On the coupling of membrane digestion with intestinal absorption of sugars and amino acids. Am J Physiol 265:G409–G417

    PubMed  CAS  Google Scholar 

  33. Carneiro-Filho BA, Lima IP, Araujo DH, Cavalcante MC, Carvalho GH, Brito GA, Lima V, Monteiro SM, Santos FN, Ribeiro RA, Lima AA (2004) Intestinal barrier function and secretion in methotrexate-induced rat intestinal mucositis. Dig Dis Sci 49:65–72

    Article  PubMed  CAS  Google Scholar 

  34. Keefe DM, Cummins AG, Dale BM, Kotasek D, Robb TA, Sage RE (1997) Effect of high-dose chemotherapy on intestinal permeability in humans. Clin Sci (Lond) 92:385–389

    CAS  Google Scholar 

  35. Barr RD, Gibson BE (2000) Nutritional status and cancer in childhood. J Pediatr Hematol Oncol 22:491–494

    Article  PubMed  CAS  Google Scholar 

  36. Buchman AL, Scolapio J, Fryer J (2003) AGA technical review on short bowel syndrome and intestinal transplantation. Gastroenterology 124:1111–1134

    Article  PubMed  Google Scholar 

  37. DiBaise JK, Young RJ, Vanderhoof JA (2004) Intestinal rehabilitation and the short bowel syndrome: part 1. Am J Gastroenterol 99:1386–1395

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Rick Havinga, Juul Baller, Theo Boer, Angelika Jurdzinski, and Pieter Klok for the excellent technical assistance in our studies.

Grants

This study was financially supported by an unrestricted research grant from Fonds NutsOhra.

Conflict of interest

We have nothing to declare. All authors have full control of all primary data and agree to allow the journal to review the data if requested.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim J. E. Tissing.

Additional information

Relevance of our manuscript to inform research, policies, and/or programs

In our manuscript, we show that continuous enteral administration can almost completely overcome the reduced absorptive capacity for glucose in rats with chemotherapy-induced gastrointestinal mucositis. Glucose might therefore be an appropriate source of dietary energy for a substantial portion of patients with mucositis, when enterally administered continuously. Our work is relevant for everybody who is involved in the feeding strategy of patients with mucositis (doctors, dieticians, caretakers, food industries, etc.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fijlstra, M., Rings, E.H.H.M., van Dijk, T.H. et al. Continuous enteral administration can overcome the limited capacity to absorb glucose in rats with methotrexate-induced gastrointestinal mucositis. Support Care Cancer 21, 863–871 (2013). https://doi.org/10.1007/s00520-012-1597-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00520-012-1597-2

Keywords

Navigation