Log in

Modelling soil borne fungal pathogens of arable crops under climate change

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Soil-borne fungal plant pathogens, agents of crown and root rot, are seldom considered in studies on climate change and agriculture due both to the complexity of the soil system and to the incomplete knowledge of their response to environmental drivers. A controlled chamber set of experiments was carried out to quantify the response of six soil-borne fungi to temperature, and a species-generic model to simulate their response was developed. The model was linked to a soil temperature model inclusive of components able to simulate soil water content also as resulting from crop water uptake. Pathogen relative growth was simulated over Europe using the IPCC A1B emission scenario derived from the Hadley-CM3 global climate model. Climate scenarios of soil temperature in 2020 and 2030 were compared to the baseline centred in the year 2000. The general trend of the response of soil-borne pathogens shows increasing growth in the coldest areas of Europe; however, a larger rate of increase is shown from 2020 to 2030 compared to that of 2000 to 2020. Projections of pathogens of winter cereals indicate a marked increase of growth rate in the soils of northern European and Baltic states. Fungal pathogens of spring sowing crops show unchanged conditions for their growth in soils of the Mediterranean countries, whereas an increase of suitable conditions was estimated for the areals of central Europe which represent the coldest limit areas where the host crops are currently grown. Differences across fungal species are shown, indicating that crop-specific analyses should be ran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aegerter BJ, Gordon TR, Davis RM (2000) Occurrence and pathogenicity of fungi associated with melon root rot and vine decline in California. Plant Dis 84:224–230, 10.1094/PDIS.2000.84.3.224

    Article  Google Scholar 

  • Anderson KA, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszakc P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544, 10.1016/j.tree.2004.07.021

    Article  Google Scholar 

  • Avilés M, Castillo S, Bascon J, Zea-Bonilla T, Martín-Sánchez PM, Pérez-Jiménez RM (2008) First report of Macrophomina phaseolina causing crown and root rot of strawberry in Spain. Plant Pathol 57:382. doi:10.1111/j.1365-3059.2007.01717.x

    Article  Google Scholar 

  • Backhouse D, Burgess LW (2002) Climatic analysis of the distribution of Fusarium graminearum, F. pseudograminearum and F. culmorum on cereals in Australia. Aust Plant Path 31:321–327. doi:10.1071/AP02026

    Article  Google Scholar 

  • Bechini L, Bocchi S, Maggiore T, Confalonieri R (2006) Parameterization of a crop growth and development simulation model at sub-model components level. An example for winter wheat (Triticum aestivum L.). Environ Model Softw 21:1042–1054. doi:10.1016/j.envsoft.2005.05.006

    Article  Google Scholar 

  • Bockus W, Shroyer J (1998) The impact of reduced tillage on soilborne plant pathogens. Annu Rev Plant Physiol Plant Mol Biol 36:485–500. doi:10.1146/annurev.phyto.36.1.485

    CAS  Google Scholar 

  • Boller EF, Avilla J, Joerg E, Malavolta C, Wijnands FG, Esbjerg P (2004) Integrated production principles and technical guidelines. In: Boller EF, Avilla J, Joerg E, Malavolta C, Wijnands FG, Esbjerg P (eds) 3rd edn. IOBC wprs Bulletin Bulletin OILB. 27:(2)2004, http://www.iobc-wprs.org/ip_ipm/01_IOBC_Principles_and_Tech_Guidelines_2004.pdf Accessed 13 August 2013

  • Bregaglio S, Donatelli M, Confalonieri R (2013) Fungal infections of rice, wheat, and grape in Europe in 2030–2050. Agron Sust Devel 33:767–776. doi:10.1007/s13593-013-0149-6

    Article  Google Scholar 

  • Bristow KL (2002) Thermal conductivity. In: Methods of soil analysis. Part 4. Physical methods. In: Dane JH, Topp GC (eds). Madison, pp. 1209–1226

  • Broders KD, Wallhead MW, Austin GD, Lipps PE, Paul PA, Mullen RW, Dorrance AE (2009) Association of soil chemical and physical properties with Pythium species diversity, community composition, and disease incidence. Phytopathology 99:957–967. doi:10.1094/PHYTO-99-8-0957

    Article  CAS  Google Scholar 

  • Challinor AJ, Simelton ES, Fraser EDG, Hemming D, Collins M (2010) Increased crop failure due to climate change: assessing adaptation options using models and socio-economic data for wheat in China. Environ Res Lett 5:034012. doi:10.1088/1748-9326/5/3/034012

    Article  Google Scholar 

  • Coakley SM, Scherm H, Chakraborty S (1999) Climate change and plant disease management. Annu Rev Plant Physiol Plant Mol Biol 37:399–426. doi:10.1146/annurev.phyto.37.1.399

    CAS  Google Scholar 

  • Colbach N, Maurin N, Huet P (1996) Influence of crop** system on foot rot of winter wheat in France. Crop Prot 15:295–305. doi:10.1016/0261-2194(95)00150-6

    Article  Google Scholar 

  • Confalonieri R, Bregaglio S, Acutis M (2010) A proposal of an indicator for quantifying model robustness based on the relationship between variability of errors and of explored conditions. Ecol Modell 221:960–964. doi:10.1016/j.ecolmodel.2009.12.003

    Article  Google Scholar 

  • Cook RJ (1980) Fusarium foot rot wheat and its control in the Pacific Northwest. Plant Dis 64:1061–1066

    Article  Google Scholar 

  • Daamen RA, Langerak CJ, Stol W (1991) Surveys of cereal diseases and pests in the Netherlands. 3. Monographella nivalis and Fusarium spp. in winter wheat fields and seed lots. Neth J Plant Path 97:105–114. doi:10.1007/BF01974274

    Article  Google Scholar 

  • Dhingra OD, Sinclair JB (1978) Biology and pathology of Macrophomina phaseolina. Imprensa da Universidade Federal de Viscosa, Brazil

    Google Scholar 

  • Diekkrüger B, Nöersheuser P, Richter O (1995) Modelling pesticide dynamics of a loam site using HERBSIM and SIMULAT. Ecol Modell 81:111–119. 10.1016/0304-3800(94)00164-D

    Article  Google Scholar 

  • Dixon GR, Tilston EL (2010) Soil-borne pathogens and their interactions with the soil environment. In: Dixon GR, Tilston EL (eds) Chapter 6: soil microbiology and sustainable crop production. Springer, Dordrecht, pp 197–272

    Google Scholar 

  • Donatelli M, Rizzoli AE (2008) A design for framework-independent model components of biophysical systems. In: Sànchez-Marrè M, Béjar J, Comas J, Rizzoli AE, Guariso G (eds) Proceedings of International Environmental Modelling and Software Society (iEMSs) 2008 International iEMSs Congress. Barcelona, Spain, pp 727–734

  • Donatelli M, Stöckle CO, Ceotto E, Rinaldi M (1997) Evaluation of CropSyst for crop** systems at two locations of northern and southern Italy. Eu J Agron 6:35–45. doi:10.1016/S1161-0301(96)02029-1

    Article  Google Scholar 

  • Donatelli M, Cerrani D, Fanchini F, Fumagalli D, Rizzoli AE (2012a) Enhancing model reuse via component centered modelling frameworks: the vision and example realizations. In: Proceedings of International Environmental Modelling and Software Society (iEMSs), 2012 International IEMSs Congress, Managing resources of a limited planet (eds. Seppelt R, Voinov AA, Lange S, Bankamp D). Leipzig, Germany, pp 1185–1192

    Google Scholar 

  • Donatelli M, Fumagalli D, Zucchini A, Duveiller G, Nelson RL, Baruth B (2012b) A EU27 database of daily weather data derived from climate change scenarios for use with crop simulation models. In: Seppelt R, Voinov AA, Lange S, Bankamp D (eds) Proceedings of International Environmental Modelling and Software Society (iEMSs), 2012 International IEMSs Congress, Managing resources of a limited planet. Leipzig, pp. 868–875

  • Donatelli M, Bregaglio S, Confalonieri R, De Mascellis R, Acutis M (2014) Comparing modelling solutions at sub-model level: a case on soil temperature simulation. Environ Modell Softw (in press )

  • Dosio A, Paruolo P (2011) Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: evaluation on the present climate. J Geophys Res 116, D16106. doi:10.1029/2011JD015934

    Article  Google Scholar 

  • El Araby ME, Kurle JE, Stetina RS (2003) First report of charcoal rot (Macrophomina phaseolina) on soybean in Minnesota. Plant Dis 87:202. doi:10.1094/PDIS.2003.87.2.202C

    Google Scholar 

  • El-Hissy FT, Abdel-Kader MI (1980) Effect of five pesticides on the mycelial growth of some soil and pathogenic fungi. Z Allg Mikrobiol 20:257–263

    Article  CAS  Google Scholar 

  • European Commission (DG ENV) (2002) Integrated crop management system in the EU http://ec.europa.eu/environment/agriculture/pdf/icm_finalreport.pdf Accessed 13 August 2013

  • Gilligan CA (1983) Modeling of soilborne pathogens. Annu Rev Plant Physiol Plant Mol Biol 21:45–64. doi:10.1146/annurev.py.21.090183.000401

    Google Scholar 

  • Glynne MD (1965) Crop sequence in relation to soil-borne pathogens. In: Baker KF, Snyder WC (eds) Ecology of soil-borne plant pathogens, prelude to biological control. University of California Press, Berkeley, pp 423–433

    Google Scholar 

  • Gulya TJ, Krupinsky J, Draper M, Charlet LD (2002) First report of charcoal rot (Macrophomina phaseolina) on sunflower in North and South Dakota. Plant Dis 86:923–923. doi:10.1094/PDIS.2002.86.8.923A

    Article  Google Scholar 

  • Heffer LV, Johnson KB (2007) White mold. The plant health instructor. http://www.apsnet.org/edcenter/intropp/lessons/fungi/ascomycetes/Pages/WhiteMold.aspx Accessed 13 August 2013

  • Hendrix FF, Campbell WA (1973) Pythiums as plant pathogens. Annu Rev Plant Physiol Plant Mol Biol 11:77–98

    Google Scholar 

  • Hersh MH, Vilgalys R, Clark JS (2012) Evaluating the impacts of multiple generalist fungal pathogens on temperate tree seedling survival. Ecology 93:511–520. doi:10.1890/11-0598.1

    Article  Google Scholar 

  • Horton BJ (2012) Models for estimation of hourly soil temperature at 5cm depth and for degree-day accumulation from minimum and maximum soil temperature. Soil Res 50:447–454. doi:10.1071/SR12165

    Article  Google Scholar 

  • IPCC (2007). Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group 1 to the fourth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge

  • Jara J, Stöckle CO (1999) Simulation of water uptake in maize, using different levels of process detail. Agron J 91:256–265. doi:10.2134/agronj1999.00021962009100020013x

    Article  Google Scholar 

  • Jimenez Diaz RM, Blanco Lopez MA, Sackston WE (1983) Incidence and distribution of charcoal rot of sunflower caused by Macrophomina phaseolina in Spain. Plant Dis 67:1033–1036

    Article  Google Scholar 

  • Jones JW, Ritchie JT (1990) Crop growth models. In: Hoffman GJ, Howell TA, Solomon KH (eds) Management of farm irrigation systems, Chap. 4. St. Joseph, MI, USA, pp 63–89

  • Juroszek P, von Tiedemann A (2011) Potential strategies and future requirements for plant disease management under a changing climate. Plant Path 60:100–112. doi:10.1111/j.1365-3059.2010.02410.x

    Article  Google Scholar 

  • Kim YK, **ao CL, Rogers JD (2005) Influence of culture media and environmental factors on mycelial growth and pycnidial production of Sphaeropsis pyriputrescens. Mycologia 97:25–32. doi:10.3852/mycologia.97.1.25

    Article  CAS  Google Scholar 

  • Kluitenberg GJ (2002) Heat capacity and specific heat. In: Dane JH, Topp GC (eds) Methods of soil analysis. Part 4. Physical methods. Madison, WI, USA, pp 1201–1208

  • Lakshmi V, Jackson TJ, Zehrfuhs D (2003) Soil moisture–temperature relationships: results from two field experiments. Hydrol Process 17:3041–3057. doi:10.1002/hyp.1275

    Article  Google Scholar 

  • LaMondia J, Elmer WH, Mervosh TL, Cowles RS (2002) Integrated management of strawberry pests by rotation and intercrop**. Crop Prot 21:837–846. doi:10.1016/S0261-2194(02)00050-9

    Article  Google Scholar 

  • Loo JA (2009) Ecological impacts of non-native invertebrates and fungi on terrestrial ecosystems. Biol Invasions 11:81–96. doi:10.1007/s10530-008-9321-3

    Article  Google Scholar 

  • Manici LM, Caputo F, Cerato C (1995) Temperature response of isolates of Macrophomina phaseolina from different climatic regions of sunflower production in Italy. Plant Dis 79:834–838

    Article  Google Scholar 

  • Marín S, Sanchis V, Magan N (1995) Water activity, temperature, and pH effects on growth of Fusarium moniliforme and Fusarium proliferatum isolates from maize. Can J Microbiol 41:1063–1070

    Article  Google Scholar 

  • Mathre DE (1997) Compendium of Barley Diseases. In: Mathre DE (ed) 2nd ed. American Phytopathological Society, St.Paul, MN, p 120

  • Mehta YR (1998) Constraints on the integrated management of spot blotch of wheat. In: Duveiller E, Dubin HJ, Reeves J, McNab A (eds) Helminthosporium blights of wheat: spot blotch and tan spot, CIMMYT. Mexico, pp. 18–27

  • Micale F, Genovese G (2004), Methodology of the MARS crop yield forecasting system. Meteorological data collection, processing and analysis. Publications Office: European Communities, Italy

  • Millar CS, Colhoun J (1969) Fusarium diseases in cereals: VI. Epidemiology of Fusarium nivale on wheat. Trans Br Mycol Soc 52:195–204

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (MEA) (2005) Ecosystems and human well-being: synthesis. Island Press, Washington

    Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Srinivasan R, Williams JR (2002) Soil and water assessment tool. User’s manual. Grassland, Soil and Water Research Laboratory, Agricultural Research Service, Temple

    Google Scholar 

  • Palmero D, de Cara M, Iglesias C, Tello JC (2009) The interactive effects of temperature and osmotic potential on the growth of aquatic isolates of Fusarium culmorum. Geomicrobiol J 26:321–325. doi:10.1080/01490450902748641

    Article  CAS  Google Scholar 

  • Parton WJ (1984) Predicting soil temperatures in a shortgrass steppe. Soil Sci 138:93–101

    Article  Google Scholar 

  • Parton WJ, Logan JA (1981) A model for diurnal variation in soil and air temperature. Agric Meteorol 23:205–216

    Article  Google Scholar 

  • Parton WJ, Hartman MD, Ojima DS, Schimel DS (1998) DAYCENT and its land surface submodel: description and testing. Global Planet Change 19:35–48. doi:10.1016/S0921-8181(98)00040-X

    Article  Google Scholar 

  • Pettitt TR, Parry DW, Polley RW (1996) Effect of temperature on the incidence of nodal foot rot symptoms in winter wheat crops in England and Wales caused by Fusarium culmorum and Microdochium nivale. Agr Forest Meteorol 79:233–242. doi:10.1016/0168-1923(95)02281-3

    Article  Google Scholar 

  • Porter JR, Semenov MA (2005) Crop responses to climatic variation. Philos T Roy Soc B 360:2021–2035. doi:10.1098/rstb.2005.1752303

    Article  Google Scholar 

  • Rao VUM, Rao AVMS, Rao GGSN, Satyanarayana T, Manikandan N, Venkateshwarlu B (2011) Impact of climate change on crop water requirements and adaptation strategies. Chapter 24 in. Challenges and Opportunities in Agrometeorology. (Eds. Attri SD, Rathore LS, Sivakumar MVK, Dash SK) pp 311–319

  • Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis: from mutualism to parasitism, who controls the outcome, host or invader? New Phytol 151:705–716. doi:10.1046/j.0028-646x.2001.00210.x

    Article  Google Scholar 

  • Ritchie JT (1998) Soil water balance and plant water stress. In: Tsuji GY, Hoogenboom G, Thornton PK (eds) Understanding Options for Agricultural Production. Kluwer Academic Publishers, Dordrecht, pp 41–54

    Chapter  Google Scholar 

  • Schwartz HF (2012) Root rots of dry beans. Fact sheet no. 2.938. Crop series: diseases. Colorado State University Cooperative Extension Service. http://www.ext.colostate.edu/pubs/crops/02938.pdf Accessed 13 August 2013

  • Smiley RW, Patterson LM (1996) Pathogenic fungi associated with Fusarium foot rot of winter wheat in the semiarid Pacific Northwest USA. Plant Dis 80:944–949

    Article  Google Scholar 

  • Stöckle CO, Donatelli M, Nelson R (2003) CropSyst, a crop** systems simulation model. Eu J Agron 18:289–307. doi:10.1016/S1161-0301(02)00109-0

    Article  Google Scholar 

  • Sturz AV, Bernier CC (1989) Influence of crop rotations on winter wheat growth and yield in relation to the dynamics of pathogenic crown and root rot fungal complexes. Can J Plant Path 11:114–121

    Article  Google Scholar 

  • Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z (2006) Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric For Meteorol 138:82–92. doi:10.1016/j.agrformet.2006.03.014

    Article  Google Scholar 

  • Vogt WG, Bedo D (2001) A preliminary weather-driven model for estimating the seasonal phenology and abundance of Lucilia cuprina. In: FLICS Conference (eds. Tasmanian Institute of Agricultural Research, University of Tasmania) pp. 62–64. Launceston, Tas

  • Walthall CL, Hatfield J, Backlund P et al (2012) Climate change and agriculture in the United States: effects and adaptation. USDA Technical Bulletin 1935, Washington

    Google Scholar 

  • Wrather JA, Chambers AY, Fox JA, Moore WF, Sciumbato GL (1995) Soybean disease loss estimates for the southern United States, 1974 to 1994. Plant Dis 79:1076–1079

    Google Scholar 

  • Yan W, Hunt LA (1999) An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann Bot 84:607–614. doi:10.1006/anbo.1999.0955

    Article  Google Scholar 

  • Yang XB, Navi SS (2005) First report of charcoal rot epidemics caused by Macrophomina phaseolina in soybean in Iowa. Plant Dis 89:526–526. doi:10.1094/PD-89-0526B

    Article  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zveibil A, Freeman S (2005) First report of crown and root rot in strawberry caused by Macrophomina phaseolina in Israel. Plant Dis 89:1014–1014. doi:10.1094/PD-89-1014C

    Article  Google Scholar 

Download references

Acknowledgments

Study funded by the project AgroScenari of the Italian Ministry of Agriculture, Food and Forestry Policies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Manici.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manici, L.M., Bregaglio, S., Fumagalli, D. et al. Modelling soil borne fungal pathogens of arable crops under climate change. Int J Biometeorol 58, 2071–2083 (2014). https://doi.org/10.1007/s00484-014-0808-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-014-0808-6

Keywords

Navigation