Log in

Two statistical approaches to forecasting the start and duration of the pollen season of Ambrosia in the area of Lyon (France)

  • Original Article
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The aim of the present study was to forecast the start and duration of the pollen season of Ambrosia from meteorological data, in order to provide early information to allergists and allergic people. We used the airborne pollen data from Lyon (France), sampled using a Hirst trap from 1987 to 1999, and the meteorological data for the same period: air temperature (minimal, maximal, and average), rainfall, relative humidity, sunshine duration and soil temperature. Two forecasting models were used, one summing the temperatures and the other making use of a multiple regression on 10-day or monthly meteorological parameters. The start of the pollen season was predicted with both methods, results being more accurate with the regression (the errors between the predicted and the observed SDP ranging from 0 to 3 days). The duration of the pollen season was predicted by a regression model, errors ranging from 0 to 7 days. The models were later tested with satisfactory results from 2 additional years (2000 and 2001). Such forecasting models are helpful for allergic people, who have to begin their anti-allergic treatment before the start of the pollen season and not when the symptoms have appeared, since a preventive treatment is more efficient than a curative one. The regression allows predictions to be made 3–5 weeks in advance and so it is of particular interest. The forecasts will be broadcast on the Internet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. Q 10 is an agrometeorological coefficient that corresponds to the ratio between the growth rate of a plant at a particular temperature (T, °C), and that which would be observed at temperature T + 10

References

  • Ado A, Ostroumov A (1968) Allergie aux pollens d'ambroisies dans la région de Krasnodar. Rev Fr Allergol Immunol Clin 8:29

    CAS  Google Scholar 

  • Agarwal MK, Swanson MC, Reed Ch E, Yunginger JW (1984) Airborne ragweed allergens: association with various particle sizes and short ragweed plant parts. J Allergy Clin Immunol 74:687–693

    CAS  PubMed  Google Scholar 

  • Andersen TB (1991) A model to predict the beginning of the pollen season. Grana 30:269–275

    Google Scholar 

  • Antépara I, Fernández JC, Gamboa P, Jauregui I, Miguel F (1995) Pollen allergy in the Bilbao area (European Atlantic seaboard climate): pollination forecasting methods. Clin Exp Allergy 25:133–140

    PubMed  Google Scholar 

  • Anonymous (1987) Advice from your allergist. Ann Allergy 59:2–3

    Google Scholar 

  • Bagarozzi DA, Travis J (1998) Ragweed pollen proteolytic enzymes: possible roles in allergies and asthma. Phytochemistry 47:593–598

    Article  CAS  PubMed  Google Scholar 

  • Banken R, Comtois P (1992) Concentration du pollen de l'herbe à poux et prévalence de la rhinite allergique dans deux municipalités des Laurentides. Allergie Immunol 24:91–94

    CAS  Google Scholar 

  • Bass DJ, Delpech V, Beard J, Bass P, Walls RS (2000) Ragweed in Australia. Aerobiologia 16:107–111

    Article  Google Scholar 

  • Basset IJ, Terasmae J (1962) Ragweeds, Ambrosia species, in Canada and their history in postglacial time. Can J Bot 40:141–150

    Google Scholar 

  • Bertrand P, Maupas M (1996) L'ambroisie à feuilles d'armoise, envahissante et allergisante. Phytoma 484:25–26

    Google Scholar 

  • Bianchi D, Schwemmin D, Wagner W (1959) Pollen release in the common ragweed (Ambrosia artemisiifolia). Bot Gaz 120:235–243

    Article  Google Scholar 

  • Bonhomme R (2000) Bases and limits to using 'degree.day' units. Eur J Agron 13:1–10

    Article  Google Scholar 

  • Bouillène M, Bouillène R (1930) Recherches expérimentales sur l'agent toxique du pollen d'Ambrosia div. Sp. (Compositacées). Bull Sci Acad R Belg 16:1052–1073

    Google Scholar 

  • Clot B, Schneiter D, Tercier P, Gehrig R, Annie G, Thibaudon M (2002) Pollen d'ambroisie en Suisse: production locale ou transport? Allerg Immunol 34:126–128

    Google Scholar 

  • Comtois P, Gagnon L (1988) Concentration pollinique et fréquence des symptômes de pollinose: une méthode pour déterminer les seuils cliniques. Rev Fr Allergol Immunol Clin 28:279–286

    Google Scholar 

  • Comtois P, Sherknies D (1992) Le pollen de l'ambroisie (Ambrosia artemisiifolia L.): prévisions et prévention. Allerg Immunol 24:22–26

    CAS  Google Scholar 

  • Coste H (1937) Flore descriptive et illustrée de la France, de la Corse et des contrées limitrophes. 2nd edn, vol 2. Librairie des Sciences et des Arts, Paris, p 482

  • Dahl A, Strandhede SO, Wihl JA (1999) Ragweed – an allergy risk in Sweden? Aerobiologia 15:293–297

    Google Scholar 

  • D'Amato G, Spieksma FTH, Liccardi G, Jäger S, Russo M, Kontou-Fili K, Nikkels H, Wüthrich B, Bonini S (1998) Pollen-related allergy in Europe. Allergy 53:567–578

    CAS  PubMed  Google Scholar 

  • Davies RR, Smith LP (1973) Weather and the grass pollen content of the air. Clin Allergy 3:95–108

    Google Scholar 

  • Déchamp C (1995) L'ambroisie, un nouveau fléau. Verso, Ahun

  • Déchamp C (1997) Climats et continents de l'ambroisie. Clim Santé 17:43–56

    Google Scholar 

  • Déchamp C, Cour P (1987) Pollen counts of ragweed and mugwort (Cour collector) in 1984 measured at 12 meteorological centers in the Rhône basin and surrounding regions. In: Boehm G, Leuschner RM (eds) Advances in aerobiology, Proceedings of the 3rd International Conference on Aerobiology. Experientia Suppl (Basel) 51:119–124

    Google Scholar 

  • Déchamp C, Deviller P (1990) Ragweed, a potential plague in Europe. Allergy Clin Immunol 2:78–81

    Google Scholar 

  • Déchamp C, Rimet ML, Méon H, Deviller P (1997) Parameters of ragweed pollination in the Lyon's area (France) from 14 years of pollen counts. Aerobiologia 13:275–279

    Google Scholar 

  • Deen W (1998) Influence of temperature, photoperiod, and irradiance on the phenological development of common ragweed (Ambrosia artemisiifolia). Weed Sci 46:555–560

    CAS  Google Scholar 

  • Driessen MNBM, Van Herpen RMA, Moelands RPM, Spieksma FTM (1989) Prediction of the start of the grass pollen season for the western part of The Netherlands. Grana 28:37–44

    Google Scholar 

  • Durand R (1967) Action de la température et du rayonnement sur la croissance. Ann Physiol Vég 9:5–27

    Google Scholar 

  • Durand R (1969) Signification et portée des sommes de températures. Bull Tech Informat Ministère Agric Dév Rural 238:185–190

    Google Scholar 

  • Durand L, Comtois P (1989) A comparative study between the Cour and the Burkard samplers. In: Comtois P (ed) Aerobiology, health, environment, a symposium. Université Montréal, Montréal, pp 93–101

  • El-Ghazali G, El-Ghazali PK, Larsson KA, Nilsson S (1993) Comparison of airborne pollen grains in Huddinge and Stockholm, Sweden. Aerobiologia 9:53–67

    Google Scholar 

  • Fornaciari M, Pieroni L, Ciuchi P, Romano B (1998) A regression model for the start of the pollen season in Olea europaea. Grana 37:110–113

    Google Scholar 

  • Frenguelli G, Spieksma FThM, Bricchi E, Romano B, Mincigrucci G, Nikkels AH, Dankaart W, Ferranti F (1991) The influence of air temperature on starting dates of the pollen season of Alnus and Populus. Grana 30:196–200

    Google Scholar 

  • Frenz DA (1999) Volumetric ragweed pollen data for eight cities in the continental United States. Ann Allergy Asthma Immunol 82:41–46

    CAS  PubMed  Google Scholar 

  • Frenz DA, Palmer MA, Hokanson JM, Scamerhorn RT (1995) Seasonal characteristics of ragweed pollen dispersal in the United Sates. Ann Allergy Asthma Immunol 75:417–422

    CAS  PubMed  Google Scholar 

  • Garcia-Mozo H, Galan C, Gomez-Casero MT, Dominguez E (2000) A comparative study of different temperature accumulation methods for predicting the start of the Quercus pollen season in Cordoba (South West Spain). Grana 39:194–199

    Article  Google Scholar 

  • Gonzales Minero FJ, Morales J, Tomas C, Candau P (1999) Relationship between air temperature and the start of pollen emission in some arboreal taxa in southwestern Spain. Grana 38:306–310

    Article  Google Scholar 

  • Guérin B (1993) Pollen et allergies. Allerbio, Varennes-en-Argonne

  • Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39:257–265

    Google Scholar 

  • Jäger S (2000) Ragweed (Ambrosia) sensitization rates correlate with the amount of inhaled airborne pollen. A 14-year study in Vienna, Austria. Aerobiologia 16:149–153

    Article  Google Scholar 

  • Járai-Komlódi M, Juhász M (1993) Ambrosia elatior (L.) in Hungary (1989–1990). Aerobiologia 9:75–78

    Google Scholar 

  • Käpylä M, Penttinen A (1981) An evaluation of the microscopical counting methods of the tape in Hirst-Burkard pollen and spore trap. Grana 20:131–141

    Google Scholar 

  • Kofol Seliger A, Macarol Hiti M, Berger T (1998) Ragweed in Slovenia. Ragweed in Europe. In: Satellite symposium proceedings. 6th International congress on aerobiology, Perugia, Italy. ALK-Abelló, Hørsholm, pp 39–41

  • Kumer E (1990) Size and shape of allergenic pollen grains. In: Falagiani P (ed) Pollinosis. CRC, Boca Raton, Fla, pp 53–65

  • Laaidi K, Laaidi M (1999) Airborne pollen of Ambrosia Burgundy (France) 1996–1997. Aerobiologia 15:65–69

    Article  Google Scholar 

  • Laaidi M (2001a) Forecasting the start of the pollen season of Poaceae: evaluation of some methods based on meteorological factors. Int J Biometeorol 45:1–7

    CAS  PubMed  Google Scholar 

  • Laaidi M (2001b) Regional variations in the pollen season of Betula in Burgundy: two models for predicting the start of the pollination. Aerobiologia 17:247–254

    Article  Google Scholar 

  • Larsson KA (1993) Prediction of pollen season with a cumulated activity method. Grana 32:111–114

    Google Scholar 

  • Lejoly-Gabriel M (1978) Recherches écologiques sur la pluie pollinique en Belgique. Acta Geogr Lovan 13:1–278

    Google Scholar 

  • Leuschner RM, Boehm G, Mari R (1990) L'ambroisie progresse-t-elle? Bull Soc Bot Fr 137:144–145

    Google Scholar 

  • Linvill DE (1990) Calculating chilling hours and chill units from daily maximum and minimum temperature observations. HortScience 25:14–16

    Google Scholar 

  • Makovcová S, Zlinská J, Mikolás V, Salát D, Krio M (1998) Ragweed in Slovak Republic. Ragweed in Europe. In: Satellite symposium proceedings. 6th International congress on aerobiology, Perugia, Italy. ALK-Abelló, Høsholm, pp 27–28

  • Mandrioli P (1990) Aerobiology – Pollen sampling, influence of climate, pollen sources, and pollen calendar. In: Falagiani P (ed) Pollinosis. CRC, Boca Raton, Fla, pp 39–52

  • Mandrioli P, Marletto V, Sirotti M, Puppi G, Zanotti A (1993) A forecast model for hazel (Corylus) and chestnut (Castanea) pollen emission. Allerg Immunol 25:141–144

    CAS  Google Scholar 

  • Mandrioli P, Ariatti A, De Nuntiis P (2000) Annual trends of thermal summations in pollen forecasts. Second European symposium on aerobiology, Vienna (Austria), p 25

  • Mathern G (2002) Ambroisie et étude de sa dissémination. Allerg Immunol 34:129–130

    CAS  Google Scholar 

  • Michel FB, Bousquet J (1997) Les allergies. Hachette Paris

  • Mullenders W, Dirickx M, Van der Haegen D, Bastin-Servais Y, Desair-Coremans M (1972) La pluie pollinique à Louvain-Heverkee en 1971. Louv Méd 91:159–176

    Google Scholar 

  • Nilsson S, Persson S (1981) Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana 20:179–182

    Google Scholar 

  • Niqueux M, Arnaud R (1981) Peut-on prévoir la date d'épiaison des variétés de graminées? Fourrages 88:39–56

    Google Scholar 

  • Orlandi F, Fornaciari M, Romano B (2002) The use of phenological data to calculate chilling units in Olea europea L. in relation to the onset of reproduction. Int J Biometeorol 46:2–8

    Article  CAS  PubMed  Google Scholar 

  • Pathirane L (1975) Graphical determination of the main pollen season. Pollen Spores 17:609–610

    Google Scholar 

  • Peeters AG (2000) Ambrosia sp pollen in Switzerland. Aerobiologia 16:295–297

    Article  Google Scholar 

  • Raynaud J (1984) Les Ambrosia françaises: botanique, origine et extension de certaines espèces. Allerg Immunol 16:277–278

    Google Scholar 

  • Raynor G, Hayes J (1970) Experimental prediction of daily ragweed concentration. Ann Allergy 28:580–585

    CAS  PubMed  Google Scholar 

  • Recio M, Cabezudo B, Del Mar Trigo M, Toro FJ (1997) Accumulative air temperature as a predicting parameter for daily airborne olive pollen (Olea europaea L.) during the pre-peak period in Malaga (Western Mediterranean area). Grana 36:44–48

    Google Scholar 

  • Reddi CS, Reddi NS (1985) Relation of pollen release to pollen concentrations in air. Grana 24:109–113

    Google Scholar 

  • Richardson EA, Anderson JL (1986) The omnidata biophenometer (TA45 - p): a chill unit and growing degree hour accumulator. Acta Hortic 184:95–99

    Google Scholar 

  • Rybnícek O, Jäger S (2001) Ambrosia (ragweed) in Europe. Allergy Clin Immunol Int 13:60–66

    Google Scholar 

  • Rybnícek O, Novotná B, Rybnicková E, Rybnícek K (2000) Ragweed in the Czech Rebublic. Aerobiologia 16:287–290

    Article  Google Scholar 

  • Sado M, Takeshita R (1990) The seasonal variation of airborne pollen grains that cause sugi-pollinosis in Japan in the last three years. In: Hjelmroos et al. (eds) Proceedings of the 4th International Conference on Aerobiology. Scandinavian University Press, Oslo-Stockholm, p 59

  • Solomon WR (1984) Aerobiology of pollinosis. J Allergy Clin Immunol 74:449–461

    CAS  PubMed  Google Scholar 

  • Solomon WR, Burge HA, Muilenberg ML (1983) Allergen carriage by atmospheric aerosol. I. Ragweed pollen determinents in smaller micronic fractions. J Allergy Clin Immunol 72:443

    CAS  PubMed  Google Scholar 

  • Spieksma FTH, Nikkels AH (1998) Airborne grass pollen in Leiden, The Nederlands: annual variations and trends in quantities and season start over 26 years. Aerobiologia 14:347–358

    Google Scholar 

  • Stark PC, Ryan LM, McDonald JL, Burge HA (1997) Using meteorological data to predict daily ragweed pollen levels. Aerobiologia 13:177–184

    Google Scholar 

  • Stepalska D, Szczepanek K, Myszkowska D (2002) Variation in Ambrosia pollen concentration in southern and central Poland in 1982–1999. Aerobiologia 18:13–22

    Article  Google Scholar 

  • Sutra JP, Desroziers M, Ceron JP, Frayssinet P, Martin E, Merlier C, Perarnaud V, Traulle MP, Veysseire JM, Hoff M, Burnichon A, Julien P, Ruffaldi P, Bourgeois E, Chambaud R, Marguier S (1992) Climat et prévention des pollinoses: la prévision statistique de la date initiale de pollinisation du bouleau en France. Clim Santé 7:53–84

    Google Scholar 

  • Thibaudon M (1992) Ambrosia en France; quelques données aéropolliniques pour les années 1987 à 1990. Allerg Immunol 24:9–16

    CAS  Google Scholar 

  • Törnevik H (1982) An aerobiological model for operational forecast of pollen concentration in the air. SMHI (Swedish Meteorological and Hydrological Institute) Reports. Rapp Meteorol Klimatol 38:1–38

    Google Scholar 

  • Touraine R (1984) La pollinose à Ambrosia. Allerg Immunol 16:275–276

    Google Scholar 

  • Yankova R, Zlatev V, Baltadjieva D, Mustakov T, Mustakov B (2000) Quantitative dynamics of Ambrosia pollen grains in Bulgaria. Aerobiologia 16:299–301

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Laaidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laaidi, M., Thibaudon, M. & Besancenot, JP. Two statistical approaches to forecasting the start and duration of the pollen season of Ambrosia in the area of Lyon (France). Int J Biometeorol 48, 65–73 (2003). https://doi.org/10.1007/s00484-003-0182-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-003-0182-2

Keywords

Navigation