Log in

Estimation of extreme Component-wise Excess design realization: a hydrological application

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The classic univariate risk measure in environmental sciences is the Return Period (RP). The RP is traditionally defined as “the average time elapsing between two successive realizations of a prescribed event”. The notion of design quantile related with RP is also of great importance. The design quantile represents the “value of the variable(s) characterizing the event associated with a given RP”. Since an individual risk may strongly be affected by the degree of dependence amongst all risks, the need for the provision of multivariate design quantiles has gained ground. In contrast to the univariate case, the design quantile definition in the multivariate setting presents certain difficulties. In particular, Salvadori, G., De Michele, C. and Durante F. define in the paper called “On the return period and design in a multivariate framework” (Hydrol Earth Syst Sci 15:3293–3305, 2011) the design realization as the vector that maximizes a weight function given that the risk vector belongs to a given critical layer of its joint multivariate distribution function. In this paper, we provide the explicit expression of the aforementioned multivariate risk measure in the Archimedean copula setting. Furthermore, this measure is estimated by using Extreme Value Theory techniques and the asymptotic normality of the proposed estimator is studied. The performance of our estimator is evaluated on simulated data. We conclude with an application on a real hydrological data-set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. A real valued function \(g:\mathbb {A}\subseteq {\mathbb {R}}^n\rightarrow {\mathbb {R}}\), is schur-concave (resp. schur-convex) on \(\mathbb {A}\) if for all \(\mathbf a , \mathbf b \in \mathbb {A}\), \(\mathbf a \prec \mathbf b\) implies \(g(\mathbf a )\ge g(\mathbf b )\) (resp. \(g(\mathbf a ) \le g(\mathbf b )\)), where \(\prec\) represents the majorization order (see Definition 6.1 in Marshall et al. 2011).

  2. Let (XY) be a bivariate vector with margin survival distributions \(\overline{F}_X\) and \(\overline{F}_Y\). Assume that (XY) follows an Archimedean copula C. Then, \({\hat{C}}: [0,1]^2\rightarrow [0,1]\) is defined as \({\hat{C}}(u,v)=u+v-1+C(1-u,1-v)\). Furthermore, \(\mathbb {P}[X \ge x, Y \ge y]={\hat{C}}(\overline{F}_X(x),\overline{F}_Y(y))\). For more details see Sect. 2.6 in Nelsen (2006).

References

  • Ahmed K, Shahid S, bin Harun S, Wang XJ (2016) Characterization of seasonal droughts in Balochistan Province, Pakistan. Stoch Environ Res Risk Assess 30(2):747–762

    Article  Google Scholar 

  • Boche H, Jorswieck EA (2007) Majorization and matrix-monotone functions in wireless communications. Now Publishers Inc., Delft

    Google Scholar 

  • Cai JJ, Einmahl JHJ, de Haan L, Zhou C (2015) Estimation of the marginal expected shortfall: the mean when a related variable is extreme. J R Stat Soc Ser B Stat Methodol 77(2):417–442

    Article  Google Scholar 

  • Chebana F, Ouarda TBMJ (2011) Multivariate quantiles in hydrological frequency analysis. Environmetrics 22:63–78

    Article  Google Scholar 

  • de Haan L, Ferreira A (2006) Extreme value theory, an introduction. Springer series in operations research and financial engineering. Springer, New York

    Google Scholar 

  • De Michele C, Salvadori G, Canossi M, Petaccia A, Rosso R (2005) Bivariate statistical approach to check adequacy of dam spillway. J Hydrol Eng 10(1):50–57

    Article  Google Scholar 

  • De Paola F, Ranucci A (2012) Analysis of spatial variability for stormwater capture tanks assessment. Irrig Drain 61(5):682–690

    Article  Google Scholar 

  • De Paola F, Ranucci A, Feo A (2013) Antecedent moisture condition (SCS) frequency assessment: a case study in Southern Italy. Irrig Drain 62:61–71

    Article  Google Scholar 

  • Denuit M, Dhaene J, Goovaerts M, Kaas R (2005) Actuarial theory for dependence risks: measures orders and models. Wiley, New York

    Book  Google Scholar 

  • Di Bernardino E, Fernández-Ponce J, Palacios-Rodríguez F, Rodríguez-Griñolo M (2015) On multivariate extensions of the conditional value-at-risk measure. Insur Math Econ 61:1–16

    Article  Google Scholar 

  • Di Bernardino E, Rullière D (2014) On tail dependence coefficients of transformed multivariate Archimedean copulas. Working paper. https://hal.archives-ouvertes.fr/hal-00992707v1

  • Dolati A, Dehgan Nezhad A (2014) Some results on convexity and concavity of multivariate copulas. Iran J Math Sci Inf 9(2):87–100

    Google Scholar 

  • Durante F (2006) New results on copulas and related concepts. Ph.D. thesis. Università degli Studi di Lecce. Italy

  • Durante F, Okhrin O (2015) Estimation procedures for exchangeable Marshall copulas with hydrological application. Stoch Environ Res Risk Assess 29(1):205–226

    Article  Google Scholar 

  • Einmahl J, De Haan L, Piterbarg V (2001) Nonparametric estimation of the spectral measure of an extreme value distribution. Ann Stat 29(5):1401–1423

    Article  Google Scholar 

  • Einmahl J, Segers J (2009) Maximum empirical likelihood estimation of the spectral measure of an extreme-value distribution. Ann Stat 37(5B):2953–2989

    Article  Google Scholar 

  • Fawcett L, Walshaw D (2016) Sea-surge and wind speed extremes: optimal estimation strategies for planners and engineers. Stoch Environ Res Risk Assess 30(2):463–480

    Article  Google Scholar 

  • Hill BM (1975) A simple general approach to inference about the tail of a distribution. Ann Stat 3(5):1163–1174

    Article  Google Scholar 

  • Jaworski P (2013) The limiting properties of copulas under univariate conditioning. In: Copulae in mathematical and quantitative finance, vol 213. Lecture Notes in Statistics, Springer, Heidelberg, pp 129–163

  • Mao T, Hu T (2012) Second-order properties of the Haezendonck–Goovaerts risk measure for extreme risks. Insur Math Econ 51:333–343

    Article  Google Scholar 

  • Marshall A, Olkin I, Arnold BC (2011) Inequalities: theory of majorization and its applications, 2nd edn. Springer, New York

    Book  Google Scholar 

  • McNeil A, Nešlehová J (2009) Multivariate archimedean copulas, d-monotone functions and \(l_1-\)norm symmetric distributions. Ann Stat 37(5B):3059–3097

    Article  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas. Springer series in statistics. Springer, New York

    Google Scholar 

  • Papalexiou SM, Koutsoyiannis D, Makropoulos C (2013) How extreme is extreme? An assessment of daily rainfall distribution tails. Hydrol Earth Syst Sci 17:851–862

    Article  Google Scholar 

  • Pappadà R, Perrone E, Durante F, Salvadori G (2016) Spin-off extreme value and archimedean copulas for estimating the bivariate structural risk. Stoch Environ Res Risk Assess 30(1):327–342

    Article  Google Scholar 

  • Pavlopoulos H, Picek J, Jurečková J (2008) Heavy tailed durations of regional rainfall. Appl Math 53(3):249–265

    Article  Google Scholar 

  • Requena AI, Chebana F, Mediero L (2016) A complete procedure for multivariate index-flood model application. J Hydrol 535:559–580

    Article  Google Scholar 

  • Saad C, El Adlouni S, St-Hilaire A, Gachon P (2015) A nested multivariate copula approach to hydrometeorological simulations of spring floods: the case of the Richelieu River (Québec, Canada) record flood. Stoch Environ Res Risk Assess 29(1):275–294

    Article  Google Scholar 

  • Salvadori G, De Michele C, Durante F (2011) On the return period and design in a multivariate framework. Hydrol Earth Syst Sci 15:3293–3305

    Article  Google Scholar 

  • Salvadori G, Durante F, De Michele C, Bernardi M, Petrella L (2016) A multivariate copula-based framework for dealing with hazard scenarios and failure probabilities. Water Resour Res 52(5):3701–3721

    Article  Google Scholar 

  • Salvadori G, Durante F, Perrone E (2013) Semi-parametric approximation of Kendall’s distribution function and multivariate return periods. J Soc Fr Stat 154(1):151–173

    Google Scholar 

  • Salvadori G, Tomasicchio GR, D’Alessandro F (2014) Practical guidelines for multivariate analysis and design in coastal and off-shore engineering. Coast Eng 88:1–14

    Article  Google Scholar 

  • Serfling R (1980) Approximation theorems of mathematical statistics. Wiley, New York

    Book  Google Scholar 

  • Serfling R (2002) Quantile functions for multivariate analysis: approaches and applications. Stat Neerl 56(2):214–232

    Article  Google Scholar 

  • Serinaldi F (2015a) Can we tell more than we can know? The limits of bivariate drought analyses in the United States. Stoch Environ Res Risk Assess. doi:10.1007/s00477-015-1124-3

  • Serinaldi F (2015b) Dismissing return periods!. Stoch Environ Res Risk Assess 29(4):1179–1189

    Article  Google Scholar 

  • Serinaldi F, Kilsby CG (2015) Stationarity is undead: uncertainty dominates the distribution of extremes. Adv Water Resour 77:17–36

    Article  Google Scholar 

  • Singh V, Jain S, Tyagi A (2007) Risk and reliability analysis. ASCE Press, Reston

    Book  Google Scholar 

  • Torres R, Lillo RE, Laniado H (2015) A directional multivariate value at risk. Insur Math Econ 65:111–123

    Article  Google Scholar 

  • Vandenberghe S, van den Berg MJ, Gräler B, Petroselli A, Grimaldi S, De Baets B, Verhoest NEC (2012) Joint return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation. Hydrol Earth Syst Sci Dis 9:6781–6828

    Article  Google Scholar 

  • Volpi E, Fiori A (2014) Hydraulic structures subject to bivariate hydrological loads: return period, design, and risk assessment. Water Resour Res 50(2):885–897

    Article  Google Scholar 

  • Zhang R, Chen X, Cheng Q, Zhang Z, Shi P (2016) Joint probability of precipitation and reservoir storage for drought estimation in the headwater basin of the Huaihe River, China. Stoch Environ Res Risk Assess. doi:10.1007/s00477-016-1249-z

Download references

Acknowledgements

The authors thank the associated editor and the referees whose comments helped to improve a previous version of this paper. Furthermore, the authors thank Gianfausto Salvadori and Fabrizio Durante for fruitful discussions. This work was partly supported by a grant from the Junta de Andalucía (Spain) for research group (FQM- 328) and by a pre-doctoral contract (Palacios Rodríguez, F.) from the “V Plan Propio de Investigación” of the University of Seville.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Palacios-Rodríguez.

Appendices

Appendix 1: Definitions of regular varying functions

In the following, the notions of regularly varying (RV) and second-order regularly varying (2RV) function are introduced. These definitions are useful in Sect. 3. For more details, the reader is referred to Section B.1 in de Haan and Ferreira (2006) and Mao and Hu (2012).

Definition 6.1

(RV function). A measurable function, \(h:{\mathbb {R}}_+\rightarrow {\mathbb {R}}\) that is eventually positive, is said to be of regular variation at infinity with index \(\gamma \in {\mathbb {R}} \backslash \{0\}\), denoted by \(h\in RV_\gamma (+\infty )\), if for any \(x>0\),

$$\begin{aligned} \lim _{t\rightarrow \infty }\frac{h(tx)}{h(t)}=x^\gamma . \end{aligned}$$
(15)

If (15) holds with \(\gamma =0\) for any \(x>0\), then h is said to be slowly varying at infinity and is written as \(h\in RV_0(+\infty )\).

Definition 6.2

(2RV function). A measurable function, \(h:{\mathbb {R}}_+\rightarrow {\mathbb {R}}\) that is eventually positive, is said to be of second-order regular variation with the first-order parameter \(\gamma \in {\mathbb {R}}\) and the second-order parameter \(\tau \le 0\), denoted by \(h\in 2RV_{\gamma ,\tau }(A)\), if there exists some ultimately positive or negative function A(t) with \(A(t)\rightarrow 0\) as \(t\rightarrow \infty\) such that

$$\begin{aligned} \lim _{t\rightarrow \infty }\frac{\frac{h(tx)}{h(t)}-x^\gamma }{A(t)}= H(x), \text{ with } H(x)=x^\gamma \int _{1}^x s^{\tau -1} ds, \forall x>0. \end{aligned}$$

Here, A is referred to as an auxiliary function of h. It is verified that \(|A|\in RV_\tau (+\infty )\).

Appendix 2: First- and second-order tail behaviour of \(Y\mathop {=}\limits ^{d}\max \{V_1, \ldots , V_d\}\)

Let \(Y\mathop {=}\limits ^{d}\max \{V_1, \ldots , V_d\}\) be the random variable introduced in Sect. 3. The (first-order) tail behaviour of Y is studied in the following proposition. The interested reader is also referred to Theorem 1.1.8 in de Haan and Ferreira (2006).

Proposition 7.1

(The von Mises condition for Y). Assume that \({{\varvec{X}}}=(X_1,\ldots , X_d)\) satisfies conditions (a) and (b) in Assumption 2.1. Assume that \(\phi _{\varvec{\theta }} \in RV_{\rho }(1)\), with \(\rho \in [1,+\infty )\). Let \(Y\mathop {=}\limits ^{d}\max \{V_1, \ldots , V_d\}\) with \(V_i\mathop {=}\limits ^{d}F_i(X_i)\), for \(i \in \{1, \ldots , d\}\). Then, \(F_{{{Y}}}\) verifies the von Mises condition with tail index \(\gamma _{{{{Y}}}}=-1\). In particular, \(Y \in MDA(\Psi _{\gamma _Y = -1})\).

Proof

From Sect. 3, we obtain

$$\begin{aligned} F'_{{{Y}}}(t)=(\phi _{\varvec{\theta }}^{-1})'[ d \, \phi _{\varvec{\theta }}(t)]\, d \, \phi _{\varvec{\theta }}'(t)\quad \hbox {and} \quad F''_{{{Y}}}(t)=(\phi _{\varvec{\theta }}^{-1})''[ d \, \phi _{\varvec{\theta }}(t)] \, d^2 \, (\phi _{\varvec{\theta }}'(t))^2 + (\phi _{\varvec{\theta }}^{-1})'[ d \, \phi _{\varvec{\theta }}(t)]\, d \, \phi _{\varvec{\theta }}''(t). \end{aligned}$$

The limit in Equation (1.1.30) in de Haan and Ferreira (2006) can now be calculated.

$$\begin{aligned} \lim _{t\uparrow 1} \frac{(1- F_{{{Y}}}(t))F_{{{Y}}}''(t)}{(F_{{{Y}}}'(t))^2}= & {} \lim _{t\uparrow 1} \frac{(1- \phi _{\varvec{\theta }}^{-1}(d \,\phi _{\varvec{\theta }}(t))) \, \left( (\phi _{\varvec{\theta }}^{-1})''[ d \, \phi _{\varvec{\theta }}(t)] \, d^2 \, (\phi _{\varvec{\theta }}'(t))^2+(\phi _{\varvec{\theta }}^{-1})'[ d \, \phi _{\varvec{\theta }}(t)] \, d \, \phi _{\varvec{\theta }}''(t)\right) }{\left( (\phi _{\varvec{\theta }}^{-1})'[ d \, \phi _{\varvec{\theta }}(t)] \, d \, \phi _{\varvec{\theta }}'(t)\right) ^2} \\= & {} \lim _{t\uparrow 1} (1- \phi _{\varvec{\theta }}^{-1}(d \,\phi _{\varvec{\theta }}(t))) \, (\phi _{\varvec{\theta }}^{-1})''[ d \, \phi _{\varvec{\theta }}(t)] \, (\phi _{\varvec{\theta }}'(\phi _{\varvec{\theta }}^{-1}(d \,\phi _{\varvec{\theta }}(t))))^2\\+ & {} \lim _{t\uparrow 1} (1- \phi _{\varvec{\theta }}^{-1}(d \, \phi _{\varvec{\theta }}(t))) \, \phi _{\varvec{\theta }}'(\phi _{\varvec{\theta }}^{-1}(d \, \phi _{\varvec{\theta }}(t)))\, \frac{\phi _{\varvec{\theta }}''(t)}{d \,(\phi _{\varvec{\theta }}'(t))^2} . \end{aligned}$$

Given the assumptions \(\phi _{\varvec{\theta }}\in RV_\rho (1)\), then \(\phi _{\varvec{\theta }}'\in RV_{\rho -1}(1)\). Therefore,

$$\begin{aligned} \lim _{t\uparrow 1} (1- \phi _{\varvec{\theta }}^{-1}(d \, \phi _{\varvec{\theta }}(t))) \, (\phi _{\varvec{\theta }}^{-1})''[ d \, \phi _{\varvec{\theta }}(t)]\,(\phi _{\varvec{\theta }}'(\phi _{\varvec{\theta }}^{-1}(d \,\phi _{\varvec{\theta }}(t))))^2=\rho -1 \end{aligned}$$

and

$$\begin{aligned} \lim _{t\uparrow 1} (1- \phi _{\varvec{\theta }}^{-1}(d \,\phi _{\varvec{\theta }}(t)))\,\phi _{\varvec{\theta }}'(\phi _{\varvec{\theta }}^{-1}(d \, \phi _{\varvec{\theta }}(t)))\,\frac{\phi _{\varvec{\theta }}''(t)}{d \, (\phi _{\varvec{\theta }}'(t))^2}=-\rho +1. \end{aligned}$$

Finally, we conclude \(\lim _{t\uparrow 1} \frac{(1- F_{{{Y}}}(t))F_{{{Y}}}''(t)}{(F_{{{Y}}}'(t))^2}=0 \Rightarrow \gamma _{{{Y}}}=-1.\) Hence the result follows. \(\square\)

The (second-order) tail behaviour of Y is studied in the following proposition.

Proposition 7.2

Assume that \({{\varvec{X}}}=(X_1,\ldots , X_d)\) satisfies conditions (a), (b) and (d) in Assumption 2.1. Let \(Y\mathop {=}\limits ^{d}\max \{V_1, \ldots , V_d\}\) with \(V_i\mathop {=}\limits ^{d}F_i(X_i)\), for \(i \in \{1, \ldots , d\}\). Then, \(1-U_{{{Y}}}\in 2RV_{-1, \beta }(A_{{{Y}}})\).

Proof

From Sect. 3, it is known that

$$\begin{aligned} \overline{F}_{{{Y}}}(1-1/t)=1- \phi _{\varvec{\theta }}^{-1}\left( d \, \phi _{\varvec{\theta }}(1-1/t)\right) . \end{aligned}$$

Since \(x\rightarrow \phi _{\varvec{\theta }}(1-1/x)\in 2RV_{-\rho ,\beta }(A_{{{Y}}})\), from Proposition 2.4 in Mao and Hu (2012), we can write

$$\begin{aligned} \overline{F}_{{{Y}}}(1-1/t)=1- \phi _{\varvec{\theta }}^{-1}\left[ d \, c \, t^{-\rho }\left( 1+\frac{1}{\beta }A_{{{Y}}}(t)+o(A_{{{Y}}}(t))\right) \right] . \end{aligned}$$

In addition, \(x\rightarrow \phi _{\varvec{\theta }}(1-1/x)\in 2RV_{-\rho ,\beta }(A_{{{Y}}})\) implies \(\phi _{\varvec{\theta }}\in RV_{\rho }(1)\). From Remark C in Di Bernardino and Rullière (2014), it is verified that \(1-\phi ^{-1}_{\varvec{\theta }}(1/x)\in RV_{-1/\rho }(+\infty )\). We now obtain

$$\begin{aligned} \overline{F}_{{{Y}}}(1-1/t)=(d c)^{1/\rho } \, t^{-1}\left( 1+\frac{1}{\beta }A_{{{Y}}}(t)+o(A_{{{Y}}}(t))\right) ^{1/\rho }. \end{aligned}$$

By using Taylor expansion,

$$\begin{aligned} \overline{F}_{{{Y}}}(1-1/t)=(d c)^{1/\rho } \, t^{-1}\left( 1+\frac{1}{\beta \, \rho }A_{{{Y}}}(t)+o(A_{{{Y}}}(t))\right) . \end{aligned}$$

It can be observed that \(|{\tilde{A}}_{{{Y}}}|{:}{=}|\frac{1}{\rho }A_{{{Y}}}|\in RV_{\beta }\) since assumptions. From Proposition 2.4 in Mao and Hu (2012), the result is given. \(\square\)

Appendix 3: Proofs

1.1 Proof of Proposition 2.1

Let \(\alpha \in (0,1)\). Let C and \(\overline{C}\) be, respectively, the copula and the joint survival function associated to the random vector \(\mathbf V =(V_1, \ldots , V_d)\). Note that the copula version of the constrained optimization problem in Eq. (1) can be written as

$$\begin{aligned} \delta _{{CE}}(\alpha )=\underset{\mathbf{v } \,\in \, \partial L_C(\alpha )}{\arg \max }\ \overline{C}(v_1, \ldots , v_d), \end{aligned}$$
(16)

with \(\partial L_{C}(\alpha )=\{\mathbf{v } \in [0,1]^d: C(\mathbf{v })=\alpha \}.\)

Equivalently, one can write the constrained optimization problem (16) as

$$\begin{aligned}&\underset{\mathbf{s }}{\arg \max }\,\, \overline{C}\,(\phi _{\varvec{\theta }}^{-1}( s_1) , \ldots , \phi _{\varvec{\theta }}^{-1} (s_d)) \\&\quad \text {s.t.:} \sum _{i=1}^d s_i=\phi _{\varvec{\theta }}(\alpha ), \\&\quad s_i \ge 0, \, \, \text{ for } \,\, i = 1, \ldots , d. \end{aligned}$$
(17)

Our aim is to find the solution of the constrained optimization problem in (17). From Theorem 2.21 in Boche and Jorswieck (2007), if \(\overline{C}(\phi _{\varvec{\theta }}^{-1}( s_1) , \ldots , \phi _{\varvec{\theta }}^{-1} (s_d))\) is a schur-concave functionFootnote 1, the global maximum for the problem in (17) is achieved by \({{\varvec{s}}}^{*}=\left( \frac{\phi _{\varvec{\theta }}(\alpha )}{d}, \ldots , \frac{\phi _{\varvec{\theta }}(\alpha )}{d} \right)\). We now study the schur-concavity of the function \(\overline{C}(\phi _{\varvec{\theta }}^{-1}( s_1) , \ldots , \phi _{\varvec{\theta }}^{-1} (s_d))\).

We now prove that the d-dimensional survival copula \(\overline{C}\) associated to an Archimedean copula is a schur-concave function. To this end, it is helpful to realize that by using the symmetry property, one can take \(d = 2\) without loss of generality. The interested reader is referred to Marshall et al. (2011) (Section A.5) for further details. That is, it is sufficient to prove that bivariate survival copula \(\overline{C}\) is a schur-concave function. In addition, every Archimedean copula is schur-concave (see Lemma 10.2.2 in Durante (2006) and Proposition 4.11 in Dolati and Dehgan Nezhad 2014). Furthermore, from Proposition 10.1.7 in Durante (2006), a bivariate copula C is schur-concave if and only if \({\hat{C}}(u,v)\) Footnote 2 associated to C is also a schur-concave function.

Since, in our case C is an Archimedean copula (see condition (a) in Assumption 2.1) then \({\hat{C}}(u,v)\) is also a schur-concave function. Remark that \(\overline{C}(u,v)={\hat{C}}(1-u,1-v)\), for \((u,v)\in [0,1]^2\) (see Nelsen 2006). Then to obtain the desired result, we have to prove that \({\hat{C}}(f(u),f(v)))\), with \(f(u)=1-u\), \(u\in [0,1]\), is a schur-concave function. This last statement holds true because \({\hat{C}}(f(u),f(v))\) is a composition of a an increasing schur-concave function (\({\hat{C}}\)) and a concave function (f). The interested reader is referred to Marshall et al. (2011) (Section B.2) for further details. Using similar arguments, since \(\overline{C}\) is a decreasing schur-concave function and \(\phi _{\varvec{\theta }}^{-1}\) a convex function, \(\overline{C}(\phi _{\varvec{\theta }}^{-1}( s_1) , \ldots , \phi _{\varvec{\theta }}^{-1} (s_d))\) is a schur-concave function.

Finally, by taking \(s_i=\phi (v_i)\), for \(i = 1, \ldots , d\), from Theorem 2.21 in Boche and Jorswieck (2007), the global maximum in problem (17) is achieved by \({{\varvec{v}}}^*=\left( \phi _{\varvec{\theta }}^{-1}\left( \frac{\phi _{\varvec{\theta }}(\alpha )}{d}\right) , \ldots , \phi _{\varvec{\theta }}^{-1}\left( \frac{\phi _{\varvec{\theta }}(\alpha )}{d} \right) \right)\). By using the Probability Integral Transform Theorem (see Sect. 1.5.8.3 in Denuit et al. 2005) for each margin, we obtain the result. More precisely, the global optimum point for the constrained optimization problem in Eq. (1) is given by \(\left( F_1^{-1}(v_1^*), \ldots , F_d^{-1}(v_d^*)\right)\). \(\square\)

1.2 Proof of Theorem 3.1

Firstly, note that

$$\begin{aligned} {\widehat{v}}_n({\widehat{x}}^{{{Y}}}_{1-\alpha _n}-x^{{{Y}}}_{1-\alpha _n})\mathop {\rightarrow }\limits ^{d} \Theta _1, \end{aligned}$$
(18)

where \(\Theta _1=\Gamma +B+\Lambda +\frac{\lambda }{\beta -1}\) with B a standard normal and, \(\Gamma\) and \(\Lambda\) normal distributions as defined in Theorems 3.6.1 and 4.3.1 in de Haan and Ferreira (2006).

Indeed, from Proposition 7.2 in “Appendix 2,” condition (d) in Assumption 2.1 implies that \(1-U_{{{Y}}}\in 2ERV_{-1,\beta }(A_{{{Y}}})\) and \(a(t)=(1-U_{{{Y}}}(t))\). Therefore, the asymptotic result in Eq. (18) results from Theorems 3.6.1 and 4.3.1, and Corollary 4.3.2 in de Haan and Ferreira (2006).

Consequently, we obtain

$$\begin{aligned} {\widehat{v}}_n({\hat{p}}_{n}-p_{n})\mathop {\rightarrow }\limits ^{d} - \Theta _1, \end{aligned}$$

(Theorem on page 24 in Serfling 1980).

Under conditions 3, 4 and 5 in Theorem 3.1, and by applying Theorem 4.3.8 in de Haan and Ferreira (2006), we determine that

$$\begin{aligned} \frac{\sqrt{k_i}}{\log {(d^i_n)}}\left( \frac{{\widehat{x}}^i_{p_n}}{x^i_{p_n}}-1\right) \mathop {\rightarrow }\limits ^{d} \Theta _2, \end{aligned}$$

where \(\Theta _2\) is a normal random variable with mean \(\lambda _i / (1-\tau _i)\) and variance \(\gamma ^2_i\) (see Theorem 3.2.5 in de Haan and Ferreira 2006).

We now write \({\widehat{x}}^i_{{\hat{p}}_n}\) as a function of \({\widehat{x}}^i_{p_n}\). That is, we can write

$$\begin{aligned} {\widehat{x}}^i_{{\hat{p}}_n} = X^i_{n-k_i,n} \left( \frac{k_i}{n \, \frac{{\hat{p}}_n}{p_n} \, p_n}\right) ^{{\widehat{\gamma }}_i}= {\widehat{x}}^i_{p_n} \left( \frac{{\hat{p}}_n}{p_n}\right) ^{-{\widehat{\gamma }}_i}. \end{aligned}$$

Therefore, we obtain

$$\begin{aligned} \frac{\sqrt{k_i}}{\log {(d^i_n)}}\left( \frac{{\widehat{x}}^i_{{\hat{p}}_n}}{x^i_{p_n}}-1\right)= & {} \frac{\sqrt{k_i}}{\log {(d^i_n)}}\left( \frac{{\hat{p}}_n}{p_n}\right) ^{-{\widehat{\gamma }}_i}\left( \frac{{\widehat{x}}^i_{p_n}}{x^i_{p_n}}-1\right) + \frac{\sqrt{k_i}}{\log {(d^i_n)}}\left[ \left( \frac{{\hat{p}}_n}{p_n}\right) ^{-{\widehat{\gamma }}_i}-1\right] . \end{aligned}$$
(19)

On the other hand,

$$\begin{aligned} \frac{{\hat{p}}_n}{p_n}=\frac{- \Theta _1}{v_n}+ 1+ o_{{\mathbb {P}}}\left( \frac{1}{v_n}\right) . \end{aligned}$$

Hence, we obtain

$$\begin{aligned} \frac{\sqrt{k_i}}{\log {(d^i_n)}}\left[ \left( \frac{{\hat{p}}_n}{p_n}\right) ^{-{\widehat{\gamma }}_i}-1\right] = \frac{\sqrt{k_i}}{\log {d^i_n}}\left[ \left( \frac{-\Theta _1}{v_n}+ 1+ o_{{\mathbb {P}}}\left( \frac{1}{v_n}\right) \right) ^{-{\widehat{\gamma }}_i}-1\right] . \end{aligned}$$

By using Taylor expansion and condition (13), it is verified that

$$\begin{aligned} \frac{\sqrt{k_i}}{\log {(d^i_n)}}\left[ \left( \frac{{\hat{p}}_n}{p_n}\right) ^{-{\widehat{\gamma }}_i}-1\right] \mathop {\rightarrow }\limits ^{{\mathbb {P}}}0. \end{aligned}$$
(20)

In addition, Eq. (20) implies that

$$\begin{aligned} \left( \frac{{\hat{p}}_n}{p_n}\right) ^{-{\widehat{\gamma }}_i}\mathop {\rightarrow }\limits ^{{\mathbb {P}}}1. \end{aligned}$$
(21)

Finally, by using (20) and (21) in Eq. (19), from Slutsky’s Theorem, we attain the result. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardino, E.D., Palacios-Rodríguez, F. Estimation of extreme Component-wise Excess design realization: a hydrological application. Stoch Environ Res Risk Assess 31, 2675–2689 (2017). https://doi.org/10.1007/s00477-017-1387-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-017-1387-y

Keywords

Navigation