Log in

Prediction of functional data with spatial dependence: a penalized approach

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This paper is focus on spatial functional variables whose observations are a set of spatially correlated sample curves obtained as realizations of a spatio-temporal stochastic process. In this context, as alternative to other geostatistical techniques (kriging, kernel smoothing, among others), a new method to predict the curves of temporal evolution of the process at unsampled locations and also the surfaces of geographical evolution of the variable at unobserved time points is proposed. In order to test the good performance of the proposed method, two simulation studies and an application with real climatological data have been carried out. Finally, the results were compared with ordinary functional kriging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Aguilera AM, Aguilera-Morillo MC (2013) Comparative study of different B-spline approaches for functional data. Math Comput Model 58:1568–1579

    Article  Google Scholar 

  • Aguilera AM, Aguilera-Morillo MC (2013) Penalized PCA approaches for B-spline expansions of smooth functional data. Appl Math Comput 219:7805–7819

    Google Scholar 

  • Aguilera-Morillo MC, Aguilera AM, Escabias M, Valderrama MJ (2013) Penalized spline approaches for functional logit regression. Test 22:251–277

    Article  Google Scholar 

  • Caballero W, Giraldo R, Mateu J (2013) A universal kriging approach for spatial functional data. Stoch Environ Res Risk Assess 27:1553–1563

    Article  Google Scholar 

  • Chiou JM, Müller HG, Wang JL (2004) Functional response models. Stat Sin 14:659–677

    Google Scholar 

  • Delicado P, Giraldo R, Comas C, Mateu J (2009) Statistics for spatial functional data: some recent contributions. Environmetrics 21:224–239

    Article  Google Scholar 

  • Dubrule O (1984) Comparing kriging and splines. Comput Geosci 10(2–3):327–338

    Article  Google Scholar 

  • Eilers PHC, Marx B (1996) Flexible smoothing with B-splines and penalties. Stat Sci 11:89–121

    Article  Google Scholar 

  • Eilers PHC, Currie I, Durban M (2006) Fast and compact smoothing on large multidimensional grids. Comput Stat Data Anal 50:61–76

    Article  Google Scholar 

  • Escabias M, Aguilera AM, Valderrama MJ (2005) Modeling environmental data by functional principal component logistic regression. Environmetrics 16:95–107

    Article  Google Scholar 

  • Faraway JJ (1997) Regression analysis for a functional response. Technometrics 39:254–261

    Article  Google Scholar 

  • Fernandez-Pascual RM, Espejo R, Ruiz-Medina MD (2015) Moment and Bayesian wavelet regression from spatially correlated functional data. Stoch Environ Res Risk Assess. doi:10.1007/s00477-015-1130-5

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis. Springer, New York

    Google Scholar 

  • Giraldo R (2010) Geostatistical analysis of functional data. PhD Thesis, Universitat Politècnica de Catalunya, Catalunya

  • Giraldo R, Delicado P, Mateu J (2010) Continuous time-varying kriging for spatial prediction of functional data: an environmental application. J Agric Biol Environ Stat 15:66–82

    Article  Google Scholar 

  • Giraldo R, Delicado P, Mateu J (2011) Ordinary kriging for function-valued spatial data. Environ Ecol Stat 18:411–426

    Article  Google Scholar 

  • Giraldo R, Mateu J, Delicado P (2012) geofd: an R package for function-valued geostatistical prediction. Rev Colomb Estad 35:385–407

    Google Scholar 

  • Goulard M, Voltz M (1993) Geostatistical interpolation of curves: a case study in soil science. Springer, Dordrecht, pp 805–816

    Google Scholar 

  • Harville DA (1997) Matrix algebra from a statistician’s perspective. Springer, New York

    Book  Google Scholar 

  • Horvath L, Kokoszka P (2012) Inference for functional data with applications. Springer, New York

    Book  Google Scholar 

  • Hsing T, Eubank R (2015) Theoretical foundations of functional data analysis with an introduction to linear operators. Wiley, Chichester

    Book  Google Scholar 

  • Ignaccolo R, Mateu J, Giraldo R (2014) Kriging with external drift for functional data for air quality monitoring. Stoch Environ Res Risk Assess 28:1171–1186

    Article  Google Scholar 

  • Kaufman CG, Sain SR (2010) Bayesian functional ANOVA modeling using Gaussian process prior distributions. Bayesian Anal 5(1):123–150

    Article  Google Scholar 

  • Laslett GM (1994) Kriging and splines: an empirical comparison of their predictive performance in some applications. J Am Stat Assoc 89(426):391–400

    Article  Google Scholar 

  • Lee DJ, Durban M (2009) Smooth-car mixed models for spatial count data. Comput Stat Data Anal 53:2968–2977

    Article  Google Scholar 

  • Lee DJ, Durban M (2011) Pspline ANOVA type interaction models for spatio temporal smoothing. Stat Model 11:49–69

    Article  Google Scholar 

  • Marx BD, Eilers PHC (1999) Generalized linear regression on sampled signals and curves. A P-spline approach. Technometrics 41:1–13

    Article  Google Scholar 

  • Menafoglio A, Secchi P, Dalla Rosa M (2013) A universal kriging predictor for spatially dependent functional data of a Hilbert Space. Electron J Stat 7:2209–2240

    Article  Google Scholar 

  • Ramsay JO, Silverman BW (1997) Functional data analysis, 1st edn. Springer, New York

    Book  Google Scholar 

  • Rao CR, Rao MB (1998) Matrix algebra and its applications to statistics and econometrics. World Scientific Publishing Co., Pte. Ltd., Singapore

    Book  Google Scholar 

  • Reiss PT, Huang L, Mennes M (2010) Fast function-on-scalar regression with penalized basis expansions. Int J Biostat 6:1–28

    Article  Google Scholar 

  • Ruiz-Medina MD, Espejo RM (2012) Spatial autoregressive functional plug-in prediction of ocean surface temperature. Stoch Environ Res Risk Assess 26:335–344

    Article  Google Scholar 

  • Ruiz-Medina MD, Espejo RM, Ugarte MD, Militino AF (2014) Functional time series analysis of spatiotemporal epidemiological data. Stoch Environ Res Risk Assess 28:943–954

    Article  Google Scholar 

  • Ruppert D (2002) Selecting the number of knots for penalized splines. J Comput Graph Stat 11:735–757

    Article  Google Scholar 

  • Sangalli LM, Ramsay JO, Ramsay TO (2013) Spatial spline regression models. J R Stat Soc B 75:1–23

    Article  Google Scholar 

  • Shi JQ, Choi T (2011) Gaussian process regression analysis for functional data. CRC Press, Chapman and Hall, Boca Raton

    Google Scholar 

  • Sigrist F, Kuensch HR, Stahel WA (2015) spate: an R package for spatio-temporal modeling with a stochastic advection–diffusion process. J Stat Softw 63:1–23

    Article  Google Scholar 

  • Ugarte MD, Goicoa T, Militino AF, Durban M (2009) Spline smoothing in small area trend estimation and smoothing. Comput Stat Data Anal 53:3616–3629

    Article  Google Scholar 

  • Yakowitz SJ, Szidarovsky F (1985) A comparison of kriging with non-parametric regression methods. J Multivar Anal 16:21–53

    Article  Google Scholar 

  • Zhang J-T (2013) Analysis of variance for functional data. CRC Press, Chapman and Hall

  • Zhang J-T, Chen J (2007) Statistical inference for functional data. Ann Stat 35(3):1052–1079

    Article  Google Scholar 

Download references

Acknowledgments

This research has been funded by Project P11-FQM-8068 from Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía, Spain and the Projects MTM2013-47929-P, MTM 2011-28285-C02-C2 and MTM 2014-52184-P from Secretaría de Estado Investigación, Desarrollo e Innovación, Ministerio de Economía y Competitividad, Spain. we want to thanks Giraldo et al. by providing the R code related to Functional Kriging. Finally, we also thank the referees for the valuable comments on our manuscript. These comments helped to improve the organization and the understanding of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Carmen Aguilera-Morillo.

Appendix

Appendix

Taking into account the following properties (Harville 1997)

$$\begin{aligned} vec(A)^{\prime }(D\otimes B)vec(C)&= trace(A^{\prime }BCD^{\prime }), \\ trace(A^{\prime }AB)&= trace(ABA^{\prime }), \end{aligned}$$
(6)

the Eq. (5) can be rewritten as

$$\begin{aligned} PSSE(y,\,\alpha )&= trace(C^{\prime }C\Psi )+ trace(Z^{\prime }ZA\Psi A^{\prime }) \\&\quad - 2trace(A\Psi C^{\prime }Z) + \lambda _{1} trace\left( A^{\prime } \left( \Delta _{d}^{U^{\prime }}\Delta _{d}^{U} \otimes I_{q}\right) A\right) \\&\quad + \lambda _{2} trace\left( A^{\prime } \left( I_{p} \otimes \Delta _{d}^{V^{\prime }}\Delta _{d}^{V}\right) A\right) + \lambda _{3} trace\left( A \left( \Delta _{d}^{T^{\prime }}\Delta _{d}^{T}\right) A^{\prime }\right) , \end{aligned}$$
(7)

with \(\Psi =\int \phi ^{T} \phi ^{T}\) being the inner product matrix between the basis functions. Next step is to compute the derivatives of Eq. (3) with respect to A. By considering the following properties (Harville 1997),

$$\begin{aligned} \frac{\partial trace(XAX^{\prime })}{\partial X}&= X(A+A^{\prime }), \end{aligned}$$
(8)
$$\begin{aligned} \frac{\partial trace(X^{\prime }AX)}{\partial X}&= (A+A^{\prime })X, \end{aligned}$$
(9)
$$\begin{aligned} \frac{\partial trace(XA)}{\partial X}&= A^{\prime }, \end{aligned}$$
(10)

we have that

$$\begin{aligned} \frac{\partial trace(C^{\prime }C\Psi )}{\partial A}&= 0,\\ \frac{\partial trace(Z^{\prime }ZA\Psi A^{\prime })}{\partial A}&\mathop {=}\limits ^{(3)}Z^{\prime }ZA(\Psi + \Psi ^{\prime })\\&\mathop {=}\limits ^{(symmetry)}2Z^{\prime }ZA\Psi ,\\ \frac{\partial -2trace(A\Psi C^{\prime }Z)}{\partial A}&\mathop {=}\limits ^{(5)}{-}2Z^{\prime }C\Psi ^{\prime }, \\ \frac{\partial \lambda _{1} trace(A^{\prime } (\Delta _{d}^{U^{\prime }}\Delta _{d}^{U}\otimes I_{q}) A)}{\partial A}&\mathop {=}\limits ^{(4)}2\lambda _{1}\left( \Delta _{d}^{U^{\prime }}\Delta _{d}^{U} \otimes I_{q}\right) A, \\ \frac{\partial \lambda _{2} trace(A^{\prime } (I_{p} \otimes \Delta _{d}^{V^{\prime }}\Delta _{d}^{V}) A)}{\partial A}&\mathop {=}\limits ^{(4)}2\lambda _{2}\left( I_{p} \otimes \Delta _{d}^{V^{\prime }}\Delta _{d}^{V}\right) A, \\ \frac{\partial \lambda _{3} trace(A (\Delta _{d}^{T^{\prime }}\Delta _{d}^{T})A^{\prime })}{\partial A}&\mathop {=}\limits ^{(3)}2\lambda _{3}A\left( \Delta _{d}^{T^{\prime }}\Delta _{d}^{T}\right) . \end{aligned}$$

Then, A satisfies the matrix system of linear equations given by

$$\begin{aligned} Z^{\prime }ZA\Psi + \lambda _{1}\left( \Delta _{d}^{U^{\prime }}\Delta _{d}^{U} \otimes I_{q}\right) A + \lambda _{2}\left( I_{p} \otimes \Delta _{d}^{V^{\prime }}\Delta _{d}^{V}\right) A +\lambda _{3}A \left( \Delta _{d}^{T^{\prime }}\Delta _{d}^{T}\right) = Z^{\prime }C\Psi ^{\prime }. \end{aligned}$$
(11)

In order to get the solution to A,  the Kronecker product is used to express Eq. (9) in conventional matrix algebra

$$\begin{aligned} vec(Z^{\prime }ZA\varPsi )&\mathop {=}\limits ^{(1)}\,(\varPsi \otimes (Z^{\prime }Z))vec(A),\\ vec\left( \lambda _{1}\left( \Delta _{d}^{U^{\prime }}\Delta _{d}^{U} \otimes I_{q}\right) A\right)&= vec\left( \lambda _{1}\left( \Delta _{d}^{U^{\prime }}\Delta _{d}^{U} \otimes I_{q}\right) A I_{r}\right) \\&\mathop {=}\limits ^{(1)}\lambda _{1}\left( \Delta _{d}^{U^{\prime }}\Delta _{d}^{U} \otimes I_{q} \otimes I_{r}\right) vec(A),\\ vec\left( \lambda _{2}\left( I_{p} \otimes \Delta _{d}^{V^{\prime }}\Delta _{d}^{V}\right) A\right)&= vec\left( \lambda _{2}\left( I_{p} \otimes \Delta _{d}^{V^{\prime }}\Delta _{d}^{V}\right) A I_{r}\right) \\&\mathop {=}\limits ^{(1)}\lambda _{2}\left( I_{p} \otimes \Delta _{d}^{V^{\prime }}\Delta _{d}^{V} \otimes I_{r}\right) vec(A),\\ vec\left( \lambda _{3}A \left( \Delta _{d}^{T^{\prime }}\Delta _{d}^{T}\right) \right)&= vec\left( \lambda _{3}\left( I_{p} \otimes I_{q}\right) A \left( \Delta _{d}^{T^{\prime }}\Delta _{d}^{T}\right) \right) \\&\mathop {=}\limits ^{(1)}\lambda _{3}\left( I_{p} \otimes I_{q} \otimes \Delta _{d}^{T^{\prime }}\Delta _{d}^{T}\right) vec(A). \\ \end{aligned}$$

Then, Eq. (9) can be re-written as follows

$$\begin{aligned} \left[ \varPsi \otimes (Z^{\prime }Z) + PEN_{d}^{U,V,T}\right] vec(A)= vec(Z^{\prime }C\varPsi ^{\prime }), \end{aligned}$$

where \(PEN_{d}^{U,V,T}\) is a P-spline penalty developed by Eilers et al. (2006), which is given by

$$\begin{aligned} PEN_{d}^{U,V,T}&= \lambda _{1}\left( \Delta _{d}^{U^{\prime }}\Delta _{d}^{U}\otimes I_{q}\otimes I_{r}\right) + \lambda _{2}\left( I_{p}\otimes \Delta _{d}^{V^{\prime }}\Delta _{d}^{V} \otimes I_{r}\right) \\&\quad + \lambda _{3}\left( I_{p}\otimes I_{q} \otimes \Delta _{d}^{T^{\prime }}\Delta _{d}^{T}\right) . \end{aligned}$$

Finally, A is given by

$$\begin{aligned} vec(A)=\left[ \varPsi \otimes (Z^{\prime }Z) + PEN_{d}^{U,V,T}\right] ^{-1} vec(Z^{\prime }C\varPsi ^{\prime }). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilera-Morillo, M.C., Durbán, M. & Aguilera, A.M. Prediction of functional data with spatial dependence: a penalized approach. Stoch Environ Res Risk Assess 31, 7–22 (2017). https://doi.org/10.1007/s00477-016-1216-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1216-8

Keywords

Navigation