Log in

Silicon dioxide nanoparticles improve plant growth by enhancing antioxidant enzyme capacity in bamboo (Pleioblastus pygmaeus) under lead toxicity

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Tissue culture experiments were performed to investigate the impacts of silicon dioxide nanoparticles (SiO2 NPs) on the improvement of plant growth and development in a bamboo species (Pleioblastus pygmaeus) under an experimentally controlled condition contaminated with phytotoxic levels of lead (Pb). Fifteen treatments were administered in the primary trial consisting of 50 µM, 250 µM, 500 µM, 1000 µM, or 1500 µM PbSO4 without and with 100 µM or 500 µM SiO2 NPs. The results showed that antioxidant enzyme activity first increased at low levels of Pb and then decreased with increasing concentrations of Pb. The addition of SiO2 NPs increased the capacity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and phenylalanine ammonia-lyase (PAL) in plants under Pb stress. Additionally, our findings indicated that SiO2 NPs may protect the bamboo plant plasma membrane and preserve the integrity of cells against Pb-induced oxidative stress by reducing the contents of hydrogen peroxide (H2O2) and soluble protein (SP), and polyphenol oxidase (PPO) activity. Regarding impacts on indexes of plant photosynthesis, the results revealed that SiO2 NPs were able to regulate plant growth by increasing chlorophyll and carotenoid contents, which led to increased plant biomass and plant dry weight under Pb toxicity. We conclude that SiO2 NPs improve plant growth (plant biomass) by increasing antioxidant enzyme capacity in bamboo under Pb stress. Our results also revealed that 500 µM SiO2 NPs was much more effective than 100 µM SiO2 NPs at maintaining plant growth under Pb toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adrees M, Ali S, Rizwan M et al (2015) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197

    Article  CAS  PubMed  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Aery NC, Mali M (2012) Effect of silicon on the activity of peroxidase, polyphenol oxidase and nitrate reductase in cowpea and wheat. Biochem Ind J 6(3):78–82

    CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiol 52:257–262

    Google Scholar 

  • Ashry NA, Mohamed HI (2011) Impact of secondary metabolites and related enzymes in flax resistance and or susceptibility to Powdery Mildew. World J Agric Sci 7:78–85

    CAS  Google Scholar 

  • Avdiushko SA, Ye XS, Kuc J (1993) Detection of several enzymatic activities in leaf prints of cucumber plants. Physiol Mol Plant Pathol 42:441–454

    Article  CAS  Google Scholar 

  • Bao-shan L, Chun-hui L, Li-jun F, Shu-chun Q, Min Y (2004) Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J For Res 15:138–140

    Article  Google Scholar 

  • Bradford MMA (1976) Rapid sensitive method for the quantification of microgram quantities of protein utilising the principle of protein–dye Binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cai KZ, Gao D, Luo SM, Zeng RS, Yang JY, Zhu XY (2008) Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Physiol Plantarum 134:324–333

    Article  CAS  Google Scholar 

  • Da Cunha KPV, Do Nascimento CWA (2009) Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil. Water Air Soil Pollut 197(1–4):323–330

    Article  CAS  Google Scholar 

  • Da Cunha KPV, Araújo C (2008) Silicon alleviates the toxicity of cadmium and zinc for maize (Zea mays L.) grown on contaminated soil. J Plant Nutr Soil Sci 171(6):849–853

    Article  CAS  Google Scholar 

  • Dao LHD, Beardall J (2016) Effects of lead on two green microalgae Chlorella and Scenedesmus: photosystem II activity and heterogeneity. Algal Res 16:150–159

    Article  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS)and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2(53):13

    Google Scholar 

  • Dikilitas M, Karakas S, Ahmad P (2016) Effect of lead on plant and human DNA damages and its impact on the environment. In: Ahmad P (ed) Plant metal interaction, Chap. 3. Elsevier, pp 41–67

  • Farooq MA, Ali S, Hameed A, Ishaque W, Mahmood K, Iqbal Z (2013) Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. Ecotoxicol Environ Saf 96:242–249

    Article  CAS  PubMed  Google Scholar 

  • Feng JP, Shi QH, Wang XF (2009) Effect of exogenous silicon on photosynthesis capacity and antioxidant enzyme activity in choloroplast of cucumber seedling under excess maneges. Agric Sci China 8:40–50

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155(1):2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauillard F, Richard-Forget F, Nicolas J (1993) New spectrophotometric assay for polyphenol oxidase activity. Anal Biochem 215:59–65

    Article  CAS  PubMed  Google Scholar 

  • Geiger FM (2009) Second harmonic generation, sum frequency generation, and χ (3): dissecting environmental interfaces with a nonlinear optical Swiss Army knife. Ann Rev Phys Chem 60:61–83

    Article  CAS  Google Scholar 

  • Gill S, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gomes FB, Moraes JC, Santos CD, Goussain MM (2005) Resistance induction in wheat plants by silicon and aphids. Sci Agric 62:547–551

    Article  CAS  Google Scholar 

  • Gong HZ, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  • Gu HH, Zhan SS, Wang SZ, Tang YT, Chaney RL, Fang XH, Cai XD (2012) Silicon-mediated amelioration of zinc toxicity in rice (Oryza sativa L.) seedlings. Plant Soil. 350(1–2):193–204

    Article  CAS  Google Scholar 

  • Gunes A, Inal A, Bagci EG, Coban S, Pilbeam DJ (2007) Silicon mediates changes to some physiological and enzymatic parameters symptomatic for oxidative stress in spinach (Spinacia oleracea L.) grown under B toxicity. Sci Hort. 113(2):113–119

    Article  CAS  Google Scholar 

  • Guo W, Hou YL, Wang SJ, Zhu YG (2005) Effect of silicate on the growth and arsenate uptake by rice (Oryza sativa L.) seedlings in solution culture. Plant Soil 272(1–2):173–181

    Article  CAS  Google Scholar 

  • Guo W, Zhu YG, Liu WJ, Liang YC, Geng CN, Wang SG (2007) Is the effect of silicon on rice uptake of arsenate (AsV) related to internal silicon concentrations, iron plaque and phosphate nutrition? Environ Pollut 148(1):251–257

    Article  CAS  PubMed  Google Scholar 

  • Haghighi M, Afifipour Z, Mozafarian M (2012) The effect of N–Si on tomato seed germination under salinity levels. J Biol Environ Sci 6:87–90

    Google Scholar 

  • Hajiboland R, Moradtalab N, Eshaghi Z, Feizy J (2017) Effect of silicon supplementation on growth and metabolism of strawberry plants at three developmental stages. New Zeal J Crop Hort Journal 46(2):144–161

    Article  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Li P, Gong S, Yang L, Wen L, Hou M (2016) Defense responses in rice induced by silicon amendment against infestation by the leaf folder Cnaphalocrocis medinalis. PLoS One 11(4):e0153918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Teixeira da Silva JA, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a Key factor,” in Crop Stress and Its Management: Perspectives and Strategies,V.Bandi,A.K.Shanker, C. Shanker, and M. Mandapaka, Eds., Springer, Dordrecht pp 261-315

  • Hattori T, Inanagaa S, Arakib H (2005) Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol Plant 123:459–466

    Article  CAS  Google Scholar 

  • Hogarth NJ, Belcher B (2013) The contribution of bamboo to household income and rural livelihoods in a poor and mountainous country in Guangxi, China. Int For Rev 15(1):71–81

    Google Scholar 

  • Karimi J, Mohsenzadeh S (2016) Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russ J Plant Physiol 63(1):119–123

    Article  CAS  Google Scholar 

  • Kaya C, Levent Tuna A, Sonmez O, Ince F, Higgs D (2009) Mitigation effects of silicon on maize plants grown at high zinc. J Plant Nutr 32(10):1788–1798

    Article  CAS  Google Scholar 

  • Khandekar S, Leisner S (2011) Soluble silicon modulates expression of Arabidopsis thaliana genes involved in copper stress. J Plant Physiol 168(7):699–705

    Article  CAS  PubMed  Google Scholar 

  • Krzesłowska M, Rabęda I, Basińska A, Lewandowski M, Mellerowicz EJ, Napieralska A, Samardakiewicz S, Woźny A (2016) Pectinous cell wall thickenings formation e A common defense strategy of plants to cope with Pb. Environ Pollut 214:354–361

    Article  CAS  PubMed  Google Scholar 

  • Leyva A, Jarillo JA, Salinas J, Martinez-Zapater JM (1995) Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mrnas of arabidopsis thalianna in a light- dependent manner. Plant Physiol 108:39–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, ** H (2007) Regulation of brassinosteroid signaling. Trends Plant Sci 12(1):37–41

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zheng C, Fu Y, Wu D, Yang X, Shen H (2012) Silicate-mediated alleviation of Pb toxicity in banana grown in Pb-contaminated soil. Biol Trace Elem Res 145(1):101–108

    Article  CAS  PubMed  Google Scholar 

  • Li J, Huang Y, Hu Y, ** S, Bao Q, Wang F, **ang M, **e X (2016) Lead toxicity thresholds in 17 Chinese soils based on substrate-induced nitrification assay. J Environ Sci (China) 44:131–140

    Article  CAS  Google Scholar 

  • Liang Y, Yang C, Shi H (2001) Effects of silicon on growth and mineral composition of barley grown under toxic levels of aluminum. J Plant Nutr 24:229–243

    Article  CAS  Google Scholar 

  • Liang YC, Chen Q, Liu Q, Zhang WH, Ding RX (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Wong JW, Wei L (2005) Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere 58(4):475–483

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428

    Article  CAS  PubMed  Google Scholar 

  • Lyer S, Sengupta C, Velumani A (2015) Lead toxicity: an overview of prevalence in Indians. Clin Chim Acta 451:161–164

    Article  CAS  Google Scholar 

  • Ma JF, Takahashi E (2002) Functions of silicon in plant growth. In: Ma JF, Takahashi E (eds) Soil, Fertilizer, and Plant Silicon Research in Japan, 1st ed, Elsevier Amsterdam

  • Maghsoudi K, Emam Y, Pessarakli M (2016) Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. J Plant Nutr 39(7):1001–1015

    Article  CAS  Google Scholar 

  • Miao H, Han XG, Zhang WH (2010) The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium. Ann Bot 105(6):967–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15:523–530

    CAS  Google Scholar 

  • Moussa HR (2006) Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea mays L.). Int J Agric Biol. 8:293–297

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Neumann D, Zur Nieden U (2001) Silicon and heavy metal tolerance of higher plants. Phytochem 56:685–692

    Article  CAS  Google Scholar 

  • Neumann DUZ, Nieden W, Leopold Schwieger I, Lichtenberger O (1997) Heavy metal tolerance of Minuartia verna. J Plant Physiol 151(1):101–108

    Article  CAS  Google Scholar 

  • Nwugo CC, Huerta AJ (2008) Effects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low-level cadmium. Plant Soil 311(1–2):73–86

    Article  CAS  Google Scholar 

  • Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torresdey J (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41:8–9

    Article  CAS  Google Scholar 

  • Potters G, Horemans N, Jansen MAK (2010) The cellular redox state in plant stress biology – a charging concept. Plant Physiol Biochem 48:292–300

    Article  CAS  PubMed  Google Scholar 

  • Ranger CM, Singh AP, Frantz JM, Cañas L, Locke JC, Reding ME, Vorsa N (2009) Influence of silicon on resistance of Zinnia elegans to Myzus persicae (Hemiptera: Aphididae). Environ Entomol 38(1):129–136

    Article  CAS  PubMed  Google Scholar 

  • Rizwan M, Meunier JD, Miche H, Keller C (2012) Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv Claudio W.) grown in a soil with aged contamination. J Hazard Mater 30:326–334

    Article  CAS  Google Scholar 

  • Rogalla H, Römheld V (2002) Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant Cell Environ 25:549

    Article  CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salazar MJ, Rodriguez JH, Cid CV, Pignata ML (2016) Auxin effects on Pb phytoextraction from polluted soils by Tegetesminuta L. and Bidens pilosa L.: Extractive power of their root exudates. J Hazard Mater 5(311):63–69

    Article  CAS  Google Scholar 

  • Sanchez-Ballesta MT, Zacarias L, Granell A, Lafuente MT (2000) Accumulation of PAL transcript and PAL activity as affected by heat-conditioning and low-temperature storage and its relation to chilling sensitivity in mandarin fruits. J Agric Food Chem 48:2726–2731

    Article  CAS  PubMed  Google Scholar 

  • Sgarbi E, Fornasiero RB, Lins AP, Bonatti PM (2003) Phenol metabolism is differentially affected by ozone in two cell lines from grape (Vitis vinifera L.) leaf. Plant Sci 165:951–957

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 217037:26

    Google Scholar 

  • Shi Q, Bao Z, Zhu Z, He Y, Qian Q, Yu J (2005a) Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochem 66:1551–1559

    Article  CAS  Google Scholar 

  • Shi XH, Zhang CC, Wang H, Zhang FS (2005b) Effect of Si on the distribution of Cd in rice seedlings. Plant Soil 272(1–2):53–60

    Article  CAS  Google Scholar 

  • Shi G, Cai Q, Liu C, Wu L (2010) Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regul 61(1):45–52

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2013) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21:13–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh VP, Singh S, Tripathi DK, Prasad SM, Chauhan DK (2017) Reactive oxygen species in plants: boon or bane -reactive oxygen species in plants: boon or bane - revisiting the role of ROS, JohnWiley and SonsLtd, Amsterdam

  • Sivanesan I, Park SW (2014) The role of silicon in plant tissue culture. Front Plant Sci 5:571

    Article  PubMed  PubMed Central  Google Scholar 

  • Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol 46(18):10247–10254

    CAS  PubMed  Google Scholar 

  • Solecka D, Kacperska A (2003) Phenylpropanoid deficiency affects the course of plant acclimation to cold. Physiol Plant 119:253–262

    Article  CAS  Google Scholar 

  • Song A, Li Z, Zhang J, Xue G, Fan F, Liang Y (2009) Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. J Hazard Mater 172(1):74–83

    Article  CAS  PubMed  Google Scholar 

  • Song A, Li P, Li Z, Fan F, Nikolic M, Liang Y (2011) The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Plant Soil 344(1):319–333

    Article  CAS  Google Scholar 

  • Song A, Li P, Fan F, Li Z, Liang Y (2014) The Effect of Silicon on Photosynthesis and Expression of Its Relevant Genes in Rice (Oryza sativa L.) under High-Zinc Stress. PLoS One 26:e113782

    Article  CAS  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012) Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Curr Nanosci 8(6):902–908

    Article  CAS  Google Scholar 

  • Takahashi MA, Asada K (1983) Superoxide anion prime-ability of phospholipid membranes and chloroplast thylakoids. Arch Biochem Biophys 226:558–566

    Article  CAS  PubMed  Google Scholar 

  • Taleahmad S, Haddad R (2011) Study of Silicon Effects on Antioxidant Enzyme Activities and Osmotic Adjustment of Wheat under Drought Stress. Czech J Genet Plant 47(1):17–27

    Article  CAS  Google Scholar 

  • Tang H, Liu Y, Gongetal X (2015) Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea (L ) Gaud) under cadmium stress. Environ Sci Pollut R 22(13):9999–10008

    Article  CAS  Google Scholar 

  • Treder W, Cieslinski G (2005) Effect of silicon application on cadmium uptake and distribution in strawberry plants grown on contaminated soils. J Plant Nutr 28(6):917–929

    Article  CAS  Google Scholar 

  • Trivedi DK, Gill SS, Yadav S, Tuteja N (2013) Genome-wide analysis of glutathione reductase (GR) genes from rice and Arabidopsis. Plant Signal Behav 8(2):e23021

    Article  CAS  PubMed  Google Scholar 

  • Umemura M, Takenaka C (2014) Biological cycle of silicon in moso bamboo (Phyllostachys pubescens) forests in central Japan. Ecol Res 29:501

    Article  CAS  Google Scholar 

  • Whitesides GM (2005) Nanoscience, nanotechnology, and chemistry. Small 1(2):172–179

    Article  CAS  PubMed  Google Scholar 

  • Tubana BT, Heckman JR (2015) Silicon and Plant Diseases, F.A.Rodrigues and L. E. Datnoff, Eds., Springer International Publishing, Switzerland

  • Yuvakkumar R, Elango V, Rajendran V, Kannan NS, Prabu P (2011) Influence of nanosilica powder on the growth of maize crop (Zea mays L.). Int J Green Nanotechnol 3:180–190

    Article  CAS  Google Scholar 

  • Zhang X (1992) The measurement and mechanism of lipid peroxidation and SOD, POD and CAT Activities in biological system. In Research Methodology of Crop Physiology. Agriculture Press, Bei**g, p 1992

    Google Scholar 

  • Zhang X, Zhong T, Liu L, Ouyang X (2015) Impact of soil heavy metal pollution on food safety in China. PLoS One 10(8):e0135182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zitka O, Skalickova S, Gumulec J et al (2012) Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol Lett 4(6):1247–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zlatimira S, Ekaterina Z, Charlotte P, Barcelo J, Doncheva S (2008) The effect of silicon on the symptoms of manganese toxicity in maize plants. Acta Biol Hungarica 59:479–487

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Nan**g Firestry University (Start-Up Fund) and Bamboo Research Institute for the current study. Special Fund for this work was Supported by National Key Research & Development program of China (Integration and Demonstration of Value & Efficiency—increased Technology across the Industry Chain for Bamboo, 2016 YFD0600901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Ding.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Communicated by S. Merkle.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emamverdian, A., Ding, Y., Mokhberdoran, F. et al. Silicon dioxide nanoparticles improve plant growth by enhancing antioxidant enzyme capacity in bamboo (Pleioblastus pygmaeus) under lead toxicity. Trees 34, 469–481 (2020). https://doi.org/10.1007/s00468-019-01929-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-019-01929-z

Keywords

Navigation