Log in

Internal contact modeling for finite strain topology optimization

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The present work proposes an extension of the third medium contact method for solving structural topology optimization problems that involve and exploit self-contact. A new regularization of the void region, which acts as the contact medium, makes the method suitable for cases with very large deformations. The proposed contact method is implemented in a second order topology optimization framework, which employs a coupled simultaneous solution of the mechanical, design update, and adjoint problems. All three problems are derived and presented in weak form, and discretized with finite elements of suitable order. The capabilities and accuracy of the developed method are demonstrated in a topology optimization problem for achieving a desired non-linear force–displacement path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kumar P, Saxena A, Sauer RA (2019) Computational synthesis of large deformation compliant mechanisms undergoing self and mutual contact. J Mech Des Trans ASME 141(1):012302. https://doi.org/10.1115/1.4041054

    Article  Google Scholar 

  2. Wriggers P, Schrder J, Schwarz A (2013) A finite element method for contact using a third medium. Comput Mech 52(4):837–847. https://doi.org/10.1007/s00466-013-0848-5

    Article  MathSciNet  MATH  Google Scholar 

  3. Bog T, Zander N, Kollmannsberger S, Rank E (2015) Normal contact with high order finite elements and a fictitious contact material. Comput Math Appl 70(7):1370–1390. https://doi.org/10.1016/j.camwa.2015.04.020

    Article  MathSciNet  MATH  Google Scholar 

  4. Oliver J, Hartmann S, Cante J, Weyler R, Hernndez J (2009) A contact domain method for large deformation frictional contact problems. Part 1: theoretical basis. Comput Methods Appl Mech Eng 198(33):2591–2606. https://doi.org/10.1016/j.cma.2009.03.006

    Article  MATH  Google Scholar 

  5. Simo J, Laursen T (1992) An augmented Lagrangian treatment of contact problems involving friction. Comput Struct 42(1):97–116. https://doi.org/10.1016/0045-7949(92)90540-G

    Article  MathSciNet  MATH  Google Scholar 

  6. Gitterle M, Popp A, Gee MW, Wall WA (2010) Finite deformation frictional mortar contact using a semi-smooth newton method with consistent linearization. Int J Numer Methods Eng 84(5):543–571. https://doi.org/10.1002/nme.2907

    Article  MathSciNet  MATH  Google Scholar 

  7. Hilding D, Klarbring A, Petersson J (1999) Optimization of structures in unilateral contact. Appl Mech Rev 52(4):139–160. https://doi.org/10.1115/1.3098931

    Article  Google Scholar 

  8. Strmberg N (2010) Topology optimization of structures with manufacturing and unilateral contact constraints by minimizing an adjustable compliance-volume product. Struct Multidiscip Optim 42(3):341–350. https://doi.org/10.1007/s00158-010-0502-1

    Article  MathSciNet  Google Scholar 

  9. Strömberg N, Klarbring A (2010) Topology optimization of structures in unilateral contact. Struct Multidiscip Optim 41(1):57–64. https://doi.org/10.1007/s00158-009-0407-z

    Article  MathSciNet  MATH  Google Scholar 

  10. Strömberg N (2013) The influence of sliding friction on optimal topologies. Springer, Berlin, pp 327–336. https://doi.org/10.1007/978-3-642-33968-4_20

    Book  Google Scholar 

  11. Kristiansen H, Poulios K, Aage N (2020) Topology optimization for compliance and contact pressure distribution in structural problems with friction. Comput Methods Appl Mech Eng 364:112915. https://doi.org/10.1016/j.cma.2020.112915

    Article  MathSciNet  MATH  Google Scholar 

  12. Luo Y, Li M, Kang Z (2016) Topology optimization of hyperelastic structures with frictionless contact supports. Int J Solids Struct 81:373–382. https://doi.org/10.1016/j.ijsolstr.2015.12.018

    Article  Google Scholar 

  13. Fernandez F, Puso MA, Solberg J, Tortorelli DA (2020) Topology optimization of multiple deformable bodies in contact with large deformations. Comput Methods Appl Mech Eng 371:113288. https://doi.org/10.1016/j.cma.2020.113288

    Article  MathSciNet  Google Scholar 

  14. Desmorat B (2007) Structural rigidity optimization with frictionless unilateral contact. Int J Solids Struct 44(3):1132–1144. https://doi.org/10.1016/j.ijsolstr.2006.06.010

    Article  MathSciNet  MATH  Google Scholar 

  15. Niu C, Zhang W, Gao T (2020) Topology optimization of elastic contact problems with friction using efficient adjoint sensitivity analysis with load increment reduction. Comput Struct 238:106296. https://doi.org/10.1016/j.compstruc.2020.106296

    Article  Google Scholar 

  16. Lawry M, Maute K (2015) Level set topology optimization of problems with sliding contact interfaces. Struct Multidiscip Optim 52(6):1107–1119. https://doi.org/10.1007/s00158-015-1301-5

    Article  MathSciNet  Google Scholar 

  17. Yoon GH, Kim YY (2005) Element connectivity parameterization for topology optimization of geometrically nonlinear structures. Int J Solids Struct 42(7):1983–2009. https://doi.org/10.1016/j.ijsolstr.2004.09.005

    Article  MATH  Google Scholar 

  18. Wang F, Lazarov BS, Sigmund O, Jensen JS (2014) Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems. Comput Methods Appl Mech Eng 276:453–472. https://doi.org/10.1016/j.cma.2014.03.021

    Article  MathSciNet  MATH  Google Scholar 

  19. Wallin M, Ristinmaa M (2015) Finite strain topology optimization based on phase-field regularization. Struct Multidiscip Optim 51(2):305–317. https://doi.org/10.1007/s00158-014-1141-8

    Article  MathSciNet  Google Scholar 

  20. Cho S, Jung HS (2003) Design sensitivity analysis and topology optimization of displacement-loaded non-linear structures. Comput Methods Appl Mech Eng 192(22–23):2539–2553. https://doi.org/10.1016/S0045-7825(03)00274-3

    Article  MATH  Google Scholar 

  21. Simo JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51(1-3):177–208, 177–208. https://doi.org/10.1016/0045-7825(85)90033-7

  22. Poulios K, Renard Y (2015) An unconstrained integral approximation of large sliding frictional contact between deformable solids. Comput Struct 153:75–90. https://doi.org/10.1016/j.compstruc.2015.02.027

    Article  Google Scholar 

  23. Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124. https://doi.org/10.1007/s001580100129

    Article  Google Scholar 

  24. Ebert DS, Musgrave FK, Peachey D, Perlin K, Worley S, Mark WR, Hart JC (2003) Texturing and modeling: a procedural approach, 3rd edn. Elsevier Inc, Amsterdam

    Google Scholar 

  25. Klarbring A, Torstenfelt B (2009) Ode approach to topology optimization

  26. Renard Y, Poulios K (2020) Getfem: Automated FE modeling of multiphysics problems based on a generic weak form language. ACM Trans Math Softw 47(1). https://doi.org/10.1145/3412849

  27. Geuzaine C, Remacle JF (2009) Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331. https://doi.org/10.1002/nme.2579

    Article  MathSciNet  MATH  Google Scholar 

  28. Amestoy P, Duff I, L’Excellent JY (2000) Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput Methods Appl Mech Eng 14(2):501–520. https://doi.org/10.1016/S0045-7825(99)

Download references

Acknowledgements

This work was supported by the Villum Fonden through the Villum investigator project InnoTop.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gore Lukas Bluhm.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bluhm, G.L., Sigmund, O. & Poulios, K. Internal contact modeling for finite strain topology optimization. Comput Mech 67, 1099–1114 (2021). https://doi.org/10.1007/s00466-021-01974-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-021-01974-x

Keywords

Navigation