Log in

Weighted overconstrained least-squares mixed finite elements for static and dynamic problems in quasi-incompressible elasticity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The main goal of this contribution is the improvement of the approximation quality of least-squares mixed finite elements for static and dynamic problems in quasi-incompressible elasticity. Compared with other variational approaches as for example the Galerkin method, the main drawback of least-squares formulations is the unsatisfying approximation quality in terms of accuracy and robustness. Here, lower-order elements are especially affected, see e.g. [33]. In order to circumvent these problems, we introduce overconstrained first-order systems with suited weights. We consider different mixed least-squares formulations depending on stresses and displacements with a maximal cubical polynomial interpolation. For the continuous approximation of the stresses Raviart–Thomas elements are used, while for the displacements standard conforming elements are employed. Some numerical benchmarks are presented in order to validate the performance and efficiency of the proposed formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. ABAQUS (2011) Documentation version 6.11. Dassault Systemes

  2. Auricchio F, Brezzi F, Lovadina C (2004) Mixed finite element methods (Chapter 9). In: Encyclopedia of computational mechanics, vol 1. Wiley, Hoboken

  3. Auricchio F, Beirao da Veiga L, Lovadina C, Reali A (2010) The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations. Comput Methods Appl Mech Eng 199:314–323

    Article  MATH  MathSciNet  Google Scholar 

  4. Bathe K-J (2002) Finite-element-methoden, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  5. Bell BC, Surana KS (1994) A space-time coupled p-version least-squares finite element formulation for unsteady fluid dynamics problems. Int J Numer Methods Eng 37:3545–3569

    Article  MATH  MathSciNet  Google Scholar 

  6. Bochev PB, Gunzburger MD (2009) Least-squares finite element methods, 1st edn. Springer, New York

    MATH  Google Scholar 

  7. Braess D (2001) Finite elements: theory fast solvers and applications in solid mechanics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  8. Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, NewYork

    Book  MATH  Google Scholar 

  9. Cai Z, Starke G (2003) First-order system least squares for the stress-displacement formulation: linear elasticity. SIAM J Numer Anal 41:715–730

    Article  MATH  MathSciNet  Google Scholar 

  10. Cai Z, Starke G (2004) Least-squares methods for linear elasticity. SIAM J Numer Anal 42:826–842

    Article  MATH  MathSciNet  Google Scholar 

  11. Cai Z, Lazarov R, Manteuffel TA, McCormick SF (1994) First-order system least squares for second-order partial differential equations: part I. SIAM J Numer Anal 31:1785–1799

    Article  MATH  MathSciNet  Google Scholar 

  12. Cai Z, Manteuffel TA, McCormick SF (1995) First-order system least squares for velocity-vorticity-pressure form of the Stokes equations, with application to linear elasticity. Electron Trans Numer Anal 3:150–159

    MATH  MathSciNet  Google Scholar 

  13. Cai Z, Lee C-O, Manteuffel TA, McCormick SF (2000) First-order system least squares for linear elasticity: numerical results. SIAM J Sci Comput 21:1706–1727

    Article  MATH  MathSciNet  Google Scholar 

  14. Cai Z, Korsawe J, Starke G (2005) An adaptive least squares mixed finite element method for the stress-displacement formulation of linear elasticity. Numer Methods Partial Differ Equ 21:132–148

    Article  MATH  MathSciNet  Google Scholar 

  15. Deang JM, Gunzburger MD (1998) Issues related to least-squares finite element methods for the Stokes equations. SIAM J Sci Comput 20(3):878–906

    Article  MathSciNet  Google Scholar 

  16. Hughes TJR (2000) The finite element method. Dover Publications, Mineola

    MATH  Google Scholar 

  17. Jiang B-N (1998) The least-squares finite element method. Springer, Berlin

    Book  MATH  Google Scholar 

  18. Jiang B-N, Wu J (2002) The least-squares finite element method in elasticity. Part I: plane stress or strain with drilling degrees of freedom. Int J Numer Methods Eng 53:621–636

    Article  MATH  MathSciNet  Google Scholar 

  19. Kayser-Herold O, Matthies HG (2005) Least-squares FEM, literature review. Informatik-Bericht 2005–05, TU Braunschweig, Institut für Wissenschaftliches Rechnen

  20. Kayser-Herold O, Matthies HG (2007) A unified least-squares formulation for fluid-structure interaction problems. Comput Struct 85:998–1011

    Article  MathSciNet  Google Scholar 

  21. Klaas O, Schröder J, Stein E, Miehe C (1995) A regularized dual mixed element for plane elasticity implementation and performance of the BDM element. Comput Methods Appl Mech Eng 121:201–209

    Article  MATH  Google Scholar 

  22. Kwon KC, Park SH, Jiang B-N, Youn SK (2003) The least-squares meshfree method for solving linear elastic problems. Comput Mech 30:196–211

    Article  MATH  Google Scholar 

  23. Mahnken R, Caylak I, Laschet G (2008) Two mixed finite element formulations with area bubble functions for tetrahedral elements. Comput Methods Appl Mech Eng 197:1147–1165

    Article  MATH  MathSciNet  Google Scholar 

  24. Payette GS, Reddy JN (2011) On the roles of minimization and linearization in least-squares finite element models of nonlinear boundary-value problems. J Comput Phys 230:3589–3613

    Article  MATH  MathSciNet  Google Scholar 

  25. Pian THH, Sumihara K (1984) A rational approach for assumed stress finite elements. Int J Numer Methods Eng 20:1685–1695

    Article  MATH  Google Scholar 

  26. Pontaza JP (2006) A least-squares finite element form for unsteady incompressible flows with improved velocity-pressure coupling. J Comput Phys 217:563–588

  27. Pontaza JP, Reddy JN (2004) Mixed plate blending elements based on least-squares formulation. Int J Numer Methods Eng 60:4159–4182

    Article  Google Scholar 

  28. Prabhakar V, Pontaza JP, Reddy JN (2008) A collocation penalty least-squares finite element formulation for incompressible flows. Comput Methods Appl Mech Eng 197:449–463

    Article  MATH  MathSciNet  Google Scholar 

  29. Rasmussen CC, Canfield RA, Reddy JN (2007) The least-squares finite element method applied to fluid-structure interaction problems. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, number 2007–2407

  30. Raviart PA, Thomas JM (1977) A mixed finite element method for 2-nd order elliptic problems. Mathematical aspects of finite element methods. Lecture Notes in Mathematics. Springer, New York

    Google Scholar 

  31. Reese S, Wriggers P (2000) A stabilization technique to avoid hourglassing in finite elasticity. Int J Numer Methods Eng 48:79–109

    Article  MATH  Google Scholar 

  32. Schwarz A, Schröder J, Starke G (2009) Least-squares mixed finite elements for small strain elasto-viscoplasticity. Int J Numer Methods Eng 77:1351–1370

    Article  MATH  Google Scholar 

  33. Schwarz A, Schröder J, Starke G (2010) A modified least-squares mixed finite element with improved momentum balance. Int J Numer Methods Eng 81:286–306

    MATH  Google Scholar 

  34. Schwarz A, Schröder J, Starke G, Steeger K (2012) Least-squares mixed finite elements for hyperelastic material models. In Report of the Workshop 1207 at the “Mathematisches Forschungsinstitut Oberwolfach” entitled “Advanced Computational Engineering”, organized by O. Allix, C. Carstensen, J. Schröder, P. Wriggers, pp 14–16

  35. Simo FC, Taylor RL, Pister KS (1984) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51:177–208

    Article  MathSciNet  Google Scholar 

  36. Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638

    Article  MATH  MathSciNet  Google Scholar 

  37. Starke G, Schwarz A, Schröder J (2011) Analysis of a modified first-order system least squares method for linear elasticity with improved momentum balance. SIAM J Numer Anal 49:1006–1022

    Article  MATH  MathSciNet  Google Scholar 

  38. Starke G, Müller B, Schwarz A, Schröder J (2012) Stress-displacement least squares mixed finite element approximation for hyperelastic materials. In Report of the Workshop 1207 at the “Mathematisches Forschungsinstitut Oberwolfach” entitled “Advanced Computational Engineering”, organized by O. Allix, C. Carstensen, J. Schröder, P. Wriggers, pp 11–13

  39. Yang S, Chang CL (1999) Analysis of a two-stage least-squares finite element method for the planar elasticity problem. Math Methods Appl Sci 22:713–732

    Article  MATH  MathSciNet  Google Scholar 

  40. Zienkiewicz OC, Taylor RL (2000) The finite element method—volume I: the basis, 5th edn. Butterworth Heinemann, Oxford

    Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation (DFG) under grant SCHR570/14-1. The authors thank furthermore Prof. A. Klawonn, Prof. O. Rheinbach and Prof. G. Starke for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Schwarz.

Appendix 1: Interpolation matrices of \(RT_m\) and \(P_k\)

Appendix 1: Interpolation matrices of \(RT_m\) and \(P_k\)

The fourth order plane strain compliance tensor \({\mathbb {C}}^{-1}\) is given in a matrix notation as

$$\begin{aligned} {\mathbb {C}}^{-1}_{ijkl}&= \left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} {\mathbb {C}}^{-1}_{1111} &{} {\mathbb {C}}^{-1}_{1112} &{} {\mathbb {C}}^{-1}_{1121} &{} {\mathbb {C}}^{-1}_{1122} \\ {\mathbb {C}}^{-1}_{1211} &{} {\mathbb {C}}^{-1}_{1212} &{} {\mathbb {C}}^{-1}_{1221} &{} {\mathbb {C}}^{-1}_{1222} \\ {\mathbb {C}}^{-1}_{2111} &{} {\mathbb {C}}^{-1}_{2112} &{} {\mathbb {C}}^{-1}_{2121} &{} {\mathbb {C}}^{-1}_{2122} \\ {\mathbb {C}}^{-1}_{2211} &{} {\mathbb {C}}^{-1}_{2212} &{} {\mathbb {C}}^{-1}_{2221} &{} {\mathbb {C}}^{-1}_{2222} \\ \end{array} \right] \nonumber \\&= \left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} \dfrac{-\lambda }{4(\lambda \mu +\mu ^{2})} +\dfrac{1}{2\mu }&{} 0 &{} 0 &{} \dfrac{-\lambda }{4(\lambda \mu + \mu ^{2})} \\ 0 &{} \dfrac{1}{2\mu } &{} 0 &{} 0 \\ 0 &{} 0 &{} \dfrac{1}{2\mu } &{} 0 \\ \dfrac{-\lambda }{4(\lambda \mu + \mu ^{2})} &{} 0 &{} 0 &{} \dfrac{-\lambda }{4(\lambda \mu +\mu ^{2})} +\dfrac{1}{2\mu } \\ \end{array} \right] .\nonumber \\ \end{aligned}$$
(25)

For the approximation of the unknown fields the interpolation matrices related to the stresses (\(\varvec{D}\), \(\varvec{{S}}^{J}\), \({\hat{\varvec{{S}}}}^{J}\)) and the displacements (\(\varvec{N}^{I}\), \(\varvec{B}^{I}\)) are

$$\begin{aligned} \varvec{{S}}^J \!&= \! \left[ \! \begin{array}{c@{}c@{}c@{}c} \psi ^{J}_{1} &{} \psi ^{J}_{2}&{} 0&{} 0 \\ 0&{} 0&{}\psi ^{J}_{1} &{} \psi ^{J}_{2} \\ \end{array} \!\!\right] ^T\!\!, \; {\hat{\varvec{{S}}}}^{J}\!=\! \left[ \! \begin{array}{c@{}c@{}c@{}c} 0 &{} \dfrac{1}{2}\psi ^{J}_{2} &{} -\dfrac{1}{2}\psi ^{J}_{2} &{} 0 \\ 0 &{} -\dfrac{1}{2}\psi ^{J}_{1} &{} \dfrac{1}{2}\psi ^{J}_{1} &{} 0 \\ \end{array} \!\right] ^T \!\!, \nonumber \\ \varvec{N}^{I}&= \left[ \begin{array}{c@{\quad }c} N^{I} &{} 0 \\ 0 &{} N^{I} \\ \end{array} \right] , \; \varvec{B}^{I} = \left[ \begin{array}{c@{\quad }c} N^{I}_{,1} &{} 0 \\ 0.5 N^{I}_{,2} &{} 0.5 N^{I}_{,1} \\ 0.5 N^{I}_{,2} &{} 0.5 N^{I}_{,1} \\ 0 &{} N^I_{,2} \\ \end{array} \right] \quad \text{ and } \quad \; \nonumber \\ \varvec{D}^{T}&= \left[ \begin{array}{c@{\quad }c} \displaystyle \frac{\partial }{\partial _{1}} &{} 0 \\ \displaystyle \frac{\partial }{\partial _{2}} &{} 0 \\ 0 &{}\displaystyle \frac{\partial }{\partial _{1}} \\ 0 &{} \displaystyle \frac{\partial }{\partial _{2}} \\ \end{array} \right] . \end{aligned}$$
(26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwarz, A., Steeger, K. & Schröder, J. Weighted overconstrained least-squares mixed finite elements for static and dynamic problems in quasi-incompressible elasticity. Comput Mech 54, 603–612 (2014). https://doi.org/10.1007/s00466-014-1009-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1009-1

Keywords

Navigation