Log in

Real-time validation of mechanical models coupling PGD and constitutive relation error

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this work, we introduce a general framework that enables to perform real-time validation of mechanical models. This framework is based on two main ingredients: (i) the constitutive relation error which constitutes a convenient and mechanically sound tool for model validation; (ii) a powerful method for model reduction, the proper generalized decomposition, which is used to compute a solution with separated representations and thus to run the validation process quickly. Performances of the proposed approach are illustrated on machining applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. One can note that it is the discrete version of the error that corresponds to the CRE expressed in terms of strains.

  2. The interested reader can notice that the horizontal axis for \(\lambda _1\) and \(\lambda _2\) is reduced to start at zero, that is why we observe a scale from \(0\) to \(2.1\times 10^{7}\) instead of the true one from \(1.05\times 10^{7}\) to \(3.15\times 10^{7}\).

  3. One can note that this observation is not true at each order for \((\psi _n,\phi _n)\) (order 5 is more monotone than order 4). It is actually due to the complexity of the problem which involves 4D. In the specific simple case of the same problem but reduced to only 2D \(x\) and \(X\), variations of modes \((\psi _n,\phi _n)\) are quicker and quicker at each order.

References

  1. Baldridge K, Biros G, Chaturvedi A, Douglas CC, Parashar M, How J, Saltz J, Seidel E, Sussman A (2006 DDDAS) Workshop Report, National Science Foundation, Jan 2006. http://www.dddas.org/nsf-workshop2006/wkshp-report.pdf

  2. Feng Y, Fuentes D, Hawkins A, Bass J, Rylander MN (2009) Model-based optimization and real-time control for laser treatment of heterogeneous soft issues. Comput Methods Appl Mech Eng 198(21–26):1742–1750

    Google Scholar 

  3. Fuentes D, Oden JT, Diller KR, Hazle J, Elliott A, Shetty A, Stafford RJ (2009) Computational modeling and real-time control of patient-specific laser treatment cancer. Ann Biomed Eng 37(4):763

    Article  Google Scholar 

  4. Tickonov AN, Arsenin VY (1977) Solutions to ill-posed problems. Wintson-Widley, New York

    Google Scholar 

  5. Tarantola A (1987) Inverse problem theory. Elsevier, New York

    MATH  Google Scholar 

  6. Baruch M (1982) Optimal correction of mass and stiffness matrices using measured modes. AIAA J 20(11):1623–1626

    Article  Google Scholar 

  7. Berman A, Nagy E (1983) Improvement of a large analytical model using test data. AIAA J 21(8):1168–1173

    Article  Google Scholar 

  8. Berger H, Ohayon R, Quetin L, Barthe L, Ladevèze P, Reynier M (1991) Updating methods for structural dynamics models. Rech Aérospatiale 5:9–20 (in french)

    Google Scholar 

  9. Farhat C, Hemez FM (1993) Updating finite element dynamic models using an element-by-element sensitive methodology. AIAA J 31(9):1702–1711

    Article  MATH  Google Scholar 

  10. Piranda J, Lallement G, Cogan S (1991) Parametric correction of finite element modes by minimization of an output residual: improvement of the sensitivity method. In: Proceedings of IMAC IX, Firenze

  11. Lammens S, Brughmans M, Leuridan J, Heylen W, Sas P (1995) Application of a FRF based model updating technique for the validation of finite element models of components of the automotive industry. In: Design engineering technical conferences, ASME conferences, Boston, pp 1191–1200

  12. Ladevèze P (1975) Comparaison de modèles de milieux continus. Thèse d’état, Université P. et M. Curie, Paris

  13. Ladevèze P, Pelle JP (2001) La maîtrise du calcul en mécanique linéaire et non linéaire. Hermès—Lavoisier

  14. Ladevèze P, Chouaki A (1999) Application of a posteriori error estimation for structural model updating. Inverse Probl 15(1): 49–58

    Google Scholar 

  15. Ladevèze P, Puel G, Deraemaeker A, Romeuf T (2006) Validation of structural dynamics models containing uncertainties. Comput Methods Appl Mech Eng 195(4–6):373–393

    Article  MATH  Google Scholar 

  16. Faverjon B, Ladevèze P, Louf F (2009) Validation of stochastic linear structural dynamics models. Comput Struct 87(13–14): 829–837

    Google Scholar 

  17. Charbonnel PE, Louf F, Ladevèze P (2009) Recalage de modèles de lanceurs à partir d’essais en vol. CFM 2009—19e Congrès Français de Mécanique

  18. Allix O, Feissel P, Nguyen HM (2005) Identification strategy in the presence of corrupted measurements. Eng Comput 22(5–6): 487–504

    Google Scholar 

  19. Gant F, Rouch P, Louf F, Champaney L (2011) Definition and updating of simplified models of joint stiffness. Int J Solids Struct 48(5):775–784

    Article  MATH  Google Scholar 

  20. Chinesta F, Ladevèze P, Ammar A, Cueto E, Nouy A (2009) Proper generalized decomposition in extreme simulations: towards a change of paradigm in computational mechanics? IACM Expression 26/09

  21. Karhunen K (1946) Zur spektraltheorie stochastisher prozesse. Ann Acad Sci Fenn 34

  22. Golub GH, Loan CFV (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore

  23. Chatterjee A (2000) An introduction to the proper orthogonal decomposition. Curr Sci 78(7):808–817

    Google Scholar 

  24. Krysl P, Lall S, Marsden JE (2001) Dimensional model reduction in nonlinear finite element dynamics of solids and structures. Int J Numer Methods Eng 51:479–504

    Article  MathSciNet  MATH  Google Scholar 

  25. Ryckelynck D, Chinesta F, Cueto E, Ammar A (2006) On the a priori model reduction: overview and recent developments. Arch Comput Methods Eng 13(1):91–128

    Article  MathSciNet  MATH  Google Scholar 

  26. Liberge E (2008) Réduction de modèle par POD-Galerkin pour les problèmes d’interaction fluide-structure. Thèse de l’Université de la Rochelle

  27. Ladevèze P (1999) Non linear computational structural mechanics. Springer, New York

    Book  Google Scholar 

  28. Nouy A, Ladevèze P (2004) Multiscale computational strategy with time and space homogenization: a radial-type approximation technique for solving microproblems. Int J Multiscale Comput Eng 170(2):557–574

    Article  Google Scholar 

  29. Ammar A, Morkdad B, Chinesta F (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids—part II: transient simulation using space time separated representations. J Non-Newton Fluid Mech 144(2–3):98–121

    Google Scholar 

  30. Néron D, Ladevèze P (2010) Proper generalized decomposition for multiscale and multiphysics problems. Arch Comput Methods Eng 17(4):351–372

    Article  MathSciNet  MATH  Google Scholar 

  31. Chinesta F, Ammar A, Cueto E (2010) Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch Comput Methods Eng 17(4):327–350

    Google Scholar 

  32. Nouy A (2010) A priori model reduction through proper generalized decomposition for solving time dependent partial differential equations. Comput Methods Appl Mech Eng 199:1603–1626

    Google Scholar 

  33. Ladevèze P, Chamoin L (2011) On the verification of model reduction methods based on the proper generalized decomposition. Comput Methods Appl Mech Eng 200(23–24):2032–2047

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovic Chamoin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouclier, R., Louf, F. & Chamoin, L. Real-time validation of mechanical models coupling PGD and constitutive relation error. Comput Mech 52, 861–883 (2013). https://doi.org/10.1007/s00466-013-0850-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0850-y

Keywords

Navigation