Log in

Isometric Embedding of Busemann Surfaces into \(L_1\)

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

In this paper, we prove that any non-positively curved 2-dimensional surface (alias, Busemann surface) is isometrically embeddable into \(L_1\). As a corollary, we obtain that all planar graphs which are 1-skeletons of planar non-positively curved complexes with regular Euclidean polygons as cells are \(L_1\)-embeddable with distortion at most \(2\). Our results significantly improve and simplify the results of the recent paper by A. Sidiropoulos (Non-positive curvature and the planar embedding conjecture, FOCS (2013)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Non-positively curved metric spaces constitute a large class of geodesic metric spaces at the heart of modern metric geometry and play an essential role in geometric group theory [6, 12, 18].

References

  1. Alexander, R.: Planes for which the lines are the shortest paths between points. Ill. J. Math. 22, 177–190 (1978)

    MATH  Google Scholar 

  2. Bandelt, H.-J., Chepoi, V.: Metric graph theory and geometry: a survey. In: Goodman, J.E., Pach, J., Pollack, R. (eds.) Surveys on Discrete and Computational Geometry. Twenty Years Later. Contemporary Mathematics, vol. 453, pp. 49–86. AMS, Providence, RI (2008)

    Chapter  Google Scholar 

  3. Baues, O., Peyerimhoff, N.: Curvature and geometry of tessellating plane graphs. Discrete Comput. Geom. 25, 141–159 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bourgain, J.: On Lipschitz embedding of finite metric spaces in Hilbert space. Isr. J. Math. 52, 46–52 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bretagnolle, J., Dacunha Castelle, D., Krivine, J.-L.: Lois stables et espaces \(L_p\). Ann. Inst. Henri Poincaré, Nouv. Sér., Sect. B 2, 231–259 (1966)

  6. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Grundlehren Math. Wiss., vol. 319. Springer, Berlin (1999)

    Book  Google Scholar 

  7. Chepoi, V., Dragan, F., Vaxès, Y.: Distance and routing problems in plane graphs of non-positive curvature. J. Algorithms 61, 1–30 (2006)

    Article  MathSciNet  Google Scholar 

  8. Chepoi, V., Fichet, B.: A note on circular decomposable metrics. Geom. Dedicata 69, 237–240 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Deza, M., Laurent, M.: Geometry of Cuts and Metrics. Algorithms Comb., vol. 15. Springer, Berlin (1997)

  10. Dhandapani, R., Goodman, J.E., Holmsen, A., Pollack, R., Smorodinsky, S.: Convexity in topological affine planes. Discrete Comput. Geom. 38, 243–257 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Foertsch, T., Lytchak, A., Schroeder, V. : Non-positive curvature and the Ptolemy inequality. Int. Math. Res. Not. (2007). doi:10.1093/imrn/rnm100

  12. Gromov, M.: Hyperbolic goups. In: Gersten, S.M. (ed.) Essays in Group Theory. MSRI Series, vol. 8. Springer, Berlin (1987)

    Google Scholar 

  13. Gupta, A., Newman, I., Rabinovich, Y., Sinclair, A.: Cuts, trees and \(l_1\)-embeddings of graphs. Combinatorica 24, 233–269 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Indyk, P., Matoušek, J.: Low-distortion embeddings of finite metric spaces. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn, pp. 177–196. CRC Press LLC, Boca Raton (2004)

  15. Maftuleac, D.: Algorithmique des complexes CAT(0) planaires et rectangulaires. Ph.D. thesis, Aix-Marseille Université. http://www.theses.fr/2012AIXM4032 (2012)

  16. Matoušek, J.: Lectures on Discrete Geometry. Springer, New York (2002)

    Book  MATH  Google Scholar 

  17. Okamura, H., Seymour, P.D.: Multicommodity flows in planar graphs. J. Comb. Theory, Ser. B 31, 75–81 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  18. Papadopulos, A.: Metric Spaces, Convexity and Nonpositive Curvature, IRMA Lectures in Mathematics and Theoretical Physics, vol. 6. European Mathematical Society, Zurich (2005)

    Google Scholar 

  19. Sidiropoulos, A.: Non-positive curvature, and the planar embedding conjecture. FOCS 2013, pp. 177–186. http://arxiv.org/abs/1304.7512 (2013)

  20. van de Vel, M.: Theory of Convex Structures. Elsevier, Amsterdam (1993)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank James Lee for pointing out an error in the formulation of Theorem 2 in the first version of the article. They also thank the referee for careful reading and useful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guyslain Naves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalopin, J., Chepoi, V. & Naves, G. Isometric Embedding of Busemann Surfaces into \(L_1\) . Discrete Comput Geom 53, 16–37 (2015). https://doi.org/10.1007/s00454-014-9643-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-014-9643-0

Keywords

Navigation