Log in

Production of the biosurfactant serrawettin W1 by Serratia marcescens S-1 improves hydrocarbon degradation

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

With the frequent occurrence of oil spills, the bioremediation of petroleum hydrocarbons pollution has attracted more and more attention. In this study, we investigated the biodegradation of crude oil by the biosurfactant-producing strain S-1. The strain was isolated from petroleum-contaminated soil and identified as Serratia marcescens according to partial 16S rDNA gene analysis. It was able to effectively degrade hydrocarbons with the concomitant production of biosurfactants at 20–30 °C, while there was no biosurfactant production and the degradation rate was lower at 37 °C. The biosurfactant was identified as serrawettin W1 by UPLC-ESI–MS, and was found to reduce the surface tension of water to 30 mN/m, with stable surface activity and emulsion activity at temperatures from 20 to 100 °C, pH of 2–10 and NaCl concentrations of 0–50 g/L. Serrawettin W1 significantly increased the cell surface hydrophobicity (CSH) and enhanced the bioavailability of hydrocarbon pollutants, which was conducive to the degradation of crude oil, including long-chain alkanes and aromatic hydrocarbons. Serratia marcescens S-1 has potential applications in bioremediation at low temperature.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Suja F, Rahim F, Taha MR, Hambali N, Razali MR, Khalid A, Hamzah A (2014) Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations. Intern Biodeterior Biodegrad 90:115

    Article  CAS  Google Scholar 

  2. Roberts ER (2019) Remediation of petroleum contaminated soils: biological, physical, and chemical processes. CRC Press

    Google Scholar 

  3. Zhao D, Liu C, Liu L, Zhang Y, Liu Q, Wu W-M (2011) Selection of functional consortium for crude oil-contaminated soil remediation. Intern Biodeterior Biodegrad 65:1244

    Article  CAS  Google Scholar 

  4. Parthipan P, Preetham E, Machuca LL, Rahman PK, Murugan K, Rajasekar A (2017) Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00193

    Article  PubMed  PubMed Central  Google Scholar 

  5. Abena MTB, Sodbaatar N, Li T, Damdinsuren N, Choidash B, Zhong W (2019) Crude oil biodegradation by newly isolated bacterial strains and their consortium under soil microcosm experiment. Appl Biochem Biotechnol 189:1223

    Article  Google Scholar 

  6. **a M, Liu Y, Taylor AA, Fu D, Khan AR, Terry N (2017) Crude oil depletion by bacterial strains isolated from a petroleum hydrocarbon impacted solid waste management site in California. Intern Biodeterior Biodegrad 123:70

    Article  CAS  Google Scholar 

  7. Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277

    Article  CAS  PubMed  Google Scholar 

  8. Hentati D, Chebbi A, Mahmoudi A, Hadrich F, Chamkha M (2020) Biodegradation of hydrocarbons and biosurfactants production by a newly halotolerant Pseudomonas sp. strain isolated from contaminated seawater. Biochem Eng J 166:107861

    Article  Google Scholar 

  9. Tao W, Lin J, Wang W, Huang H, Li S (2020) Biodegradation of aliphatic and polycyclic aromatic hydrocarbons by the thermophilic bioemulsifier-producing Aeribacillus pallidus strain SL-1. Ecotoxicol Environ Saf 189:109994

    Article  CAS  PubMed  Google Scholar 

  10. Deng Z, Jiang Y, Chen K, Gao F, Liu X (2020) Petroleum depletion property and microbial community shift after bioremediation Using Bacillus halotolerans T-04 and Bacillus cereus 1–1. Front Microbiol. https://doi.org/10.3389/fmicb.2020.00353

    Article  PubMed  PubMed Central  Google Scholar 

  11. de Souza MM, Colla TS, Bücker F, Ferrão MF, Te Huang C, Andreazza R, de Oliveira Camargo FA, Bento FM (2016) Biodegradation potential of Serratia marcescens for diesel/biodiesel blends Int Biodeterior. Biodegradation 110(141):146

    Google Scholar 

  12. Aruldass CA, Venil CK, Zakaria ZA, Ahmad WA (2014) Brown sugar as a low-cost medium for the production of prodigiosin by locally isolated Serratia marcescens UTM1. Intern Biodeter Biodegrad 95:19

    Article  CAS  Google Scholar 

  13. Clements T, Ndlovu T, Khan S, Khan W (2019) Biosurfactants produced by Serratia species: classification, biosynthesis, production and application. Appl Microbiol Biotechnol 103:589

    Article  CAS  PubMed  Google Scholar 

  14. Matsuyama T, Murakami T, Fujita M, Fujita S, Yano I (1986) Extracellular vesicle formation and biosurfactant production by Serratia marcescens. J Gen Microbiol 132:865

    CAS  Google Scholar 

  15. Nalini S, Parthasarathi R (2013) Biosurfactant production by Serratia rubidaea SNAU02 isolated from hydrocarbon contaminated soil and its physico-chemical characterization. Bioresour Technol 147:619

    Article  CAS  PubMed  Google Scholar 

  16. Pruthi V, Cameotra SS (2000) Novel sucrose lipid produced by Serratia marcescens and its application in enhanced oil recovery. J Surfactants Deterg 3:533

    Article  Google Scholar 

  17. Bidlan R, Deepthi N, Rastogi NK, Manonmani HK (2007) Optimised production of biosurfactant by Serratia marcescens DT-1P. Res J Microbiol 2:705–716

    Article  CAS  Google Scholar 

  18. Matsuyama T, Fujita M, Yano I (1985) Wetting agent produced by Serratia marcescens. FEMS Microbiol Lett 28:125

    Article  CAS  Google Scholar 

  19. Matsuyama T, Sogawa M, Nakagawa Y (1989) Fractal spreading growth of Serratia marcescens which produces surface active exolipids. FEMS Microbiol Lett 52:243

    Article  CAS  PubMed  Google Scholar 

  20. Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29

    Article  CAS  Google Scholar 

  21. Wang D, Lin J, Lin J, Wang W, Li S (2019) Biodegradation of petroleum hydrocarbons by Bacillus subtilis BL-27, a strain with weak hydrophobicity. Molecules 24:3021

    Article  CAS  PubMed Central  Google Scholar 

  22. Shanks RMQ, Lahr RM, Stella NA, Arena KE, Brothers KM, Kwak DH, Liu X, Kalivoda EJ (2013) A Serratia marcescens pigp homolog controls prodigiosin biosynthesis, swarming motility and hemolysis and is regulated by cAMP-CRP and HexS. PloS One 8:e57634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu Q, Lin J, Wang W, Huang H, Li S (2015) Production of surfactin isoforms by Bacillus subtilis BS-37 and its applicability to enhanced oil recovery under laboratory conditions. Biochem Eng J 93:31

    Article  CAS  Google Scholar 

  24. Fan Y, Tao W, Huang H, Li S (2017) Characterization of a novel bioemulsifier from Pseudomonas stutzeri. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-017-2326-2

    Article  PubMed  Google Scholar 

  25. **a M, Fu D, Chakraborty R, Singh RP, Terry N (2019) Enhanced crude oil depletion by constructed bacterial consortium comprising bioemulsifier producer and petroleum hydrocarbon degraders. Bioresour Technol 282:456

    Article  CAS  PubMed  Google Scholar 

  26. Matsuyama T, Tanikawa T, Nakagawa Y (2011) Serrawettins and other surfactants produced by Serratia. Springer, Berlin

    Book  Google Scholar 

  27. Takashi N, Taichiro T, Hiroyuki H, Chihiro T, Yumi A, Mitsugu M, Yoji N, Tohey M (2007) Rhamnolipid-dependent spreading growth of Pseudomonas aeruginosa on a high-agar medium: marked enhancement under CO2-rich anaerobic conditions. Microbiol Immunol 51:703

    Article  Google Scholar 

  28. Liu S, Zou Y, Chang F, Chen F, Cao Y (2018) Isolation and identification of Serratia marcescens producing high levels of prodigiosin and its fermentation optimization. Chin J App Environ Biol 24:26–32

    Google Scholar 

  29. Wei YH, Chen WC (2005) Enhanced production of prodigiosin-like pigment from Serratia marcescens SMdeltaR by medium improvement and oil-supplementation strategies. J Biosci Bioeng 99:616–622

    Article  CAS  PubMed  Google Scholar 

  30. Zhu Z, Zhang B, Cai Q, Ling J, Chen B (2020) Fish waste based lipopeptide production and the potential application as a bio-dispersant for oil spill control. Front Bioeng Biotechnol 8:734

    Article  PubMed  PubMed Central  Google Scholar 

  31. Thavasi R, Sharma S, Jayalakshmi S (2011) Evaluation of screening methods for the isolation of biosurfactant producing marine bacteria. Pet Environ Biotechnol. https://doi.org/10.4172/2157-7463.S1-001

    Article  Google Scholar 

  32. Abbasnezhad H, Gray MR, Foght JM (2008) Two different mechanisms for adhesion of Gram-negative bacterium, Pseudomonas fluorescens LP6a, to an oil-water interface. Colloids Surf B: Biointerfaces 62:36

    Article  CAS  PubMed  Google Scholar 

  33. Chen Z, Le J, Shenghui W, Jie Q, Kang L, Lili X, Yanhua S, Yanchun Y (2010) Biodegradation of beta-cypermethrin by two Serratia spp with different cell surface hydrophobicity. Bioresour Technol 101:3423

    Article  Google Scholar 

  34. Sonja K, Alexander B, Nadine K, Karl-Erich J, Anita L, Stephan T (2019) Marine biosurfactants: biosynthesis, structural diversity and biotechnological applications. Mar drugs 17:408

    Article  Google Scholar 

  35. Wongsa P, Tanaka M, Ueno A, Hasanuzzaman M, Yumoto I, Okuyama H (2004) Isolation and characterization of novel strains of Pseudomonas aeruginosa and Serratia marcescens possessing high efficiency to degrade gasoline, kerosene, diesel oil, and lubricating oil. Curr Microbiol 49:415

    Article  CAS  PubMed  Google Scholar 

  36. Morales-Guzmán G, Ferrera-Cerrato R, Rivera-Cruz MdC, Torres-Bustillos LG, Arteaga-Garibay RI, Mendoza-López MR, Esquivel-Cote R, Alarcón A (2017) Diesel degradation by emulsifying bacteria isolated from soils polluted with weathered petroleum hydrocarbons. Appl Soil Ecol 121:127

    Article  Google Scholar 

  37. Dennis E, Michael S, Souvik K (2018) Spatial-temporal profiling of prodiginines and serratamolides produced by endophytic Serratia marcescens harbored in Maytenus serrata. Sci Rep. https://doi.org/10.1038/s41598-018-23538-5

    Article  PubMed  PubMed Central  Google Scholar 

  38. Su C, **ang Z, Liu Y, Zhao X, Sun Y, Li Z, Li L, Chang F, Chen T, Wen X, Zhou Y, Zhao F (2016) Analysis of the genomic sequences and metabolites of Serratia surfactantfaciens sp. nov. YD25T that simultaneously produces prodigiosin and serrawettin W2. BMC Genomics 17:1

    Article  Google Scholar 

  39. Stephan T, Beatrix S-S, Filip K, Frank R, Rudolf H, Karl-Erich J (2014) Heterologous production of the lipopeptide biosurfactant serrawettin W1 in Escherichia coli. J Biotechnol 181:27

    Article  Google Scholar 

  40. Soberón-Chávez Gloria (2011) Biosurfactants: a general overview. Springer, Berlin

    Book  Google Scholar 

  41. Inès M, Dhouha G (2015) Review lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. Biopolymers 104:129

    Article  Google Scholar 

  42. Wei YH, Lai HC, Chen SY, Yeh MS, Chang JS (2004) Biosurfactant production by Serratia marcescens SS-1 and its isogenic strain SMΔR defective in SpnR, a quorum-sensing LuxR family protein. Biotech Lett 26:799–802

    Article  CAS  Google Scholar 

  43. Kan Kung-Hao (2006) Production and characterization of a lipopeptide biosurfactant-serrawettin from Serratia marcescens SM△R. Master Thesis, Yuan Ze University, Chungli, China, Taiwan (in chinese)

  44. Liu G, Hua Z, **n Y, Yang L, Shao B, Liu Z (2018) Advances in applications of rhamnolipids biosurfactant in environmental remediation: a review. Biotechnol Bioeng 115:796

    Article  CAS  PubMed  Google Scholar 

  45. White DA, Hird LC, Ali ST (2013) Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. J Appl Microbiol 115:744

    Article  CAS  PubMed  Google Scholar 

  46. Bao Q, Huang L, **u J, Yi L, Ma Y (2021) Study on the treatment of oily sludge in oil fields with lipopeptide/sophorolipid complex bio-surfactant. Ecotoxicol Environ Saf 212:111964

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 51774188); and the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Li.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 132 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Tao, W., Lin, J. et al. Production of the biosurfactant serrawettin W1 by Serratia marcescens S-1 improves hydrocarbon degradation. Bioprocess Biosyst Eng 44, 2541–2552 (2021). https://doi.org/10.1007/s00449-021-02625-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02625-4

Keyword

Navigation