Log in

Effect of nitrogen and/or oxygen concentration on poly(3-hydroxybutyrate) accumulation by Halomonas boliviensis

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The behaviour of Halomonas boliviensis during growth in fed-batch culture under different kind of nutrient restrictions was examined. The metabolic switch between growth and accumulation phase is determined by the limitation in one or more essential nutrient for bacterial growth. The aim of this study was to test the effect of applying limitations of a essential nutrient, such as nitrogen, and the influence of different O2 concentrations on poly(3-hydroxybutyrate) (PHB) production during the accumulation phase. Single limitations of nitrogen and oxygen provoke PHB accumulations of 45 and 37 % (g g−1), respectively, while N limitation with low O2 supply causes the highest PHB accumulation of 73 %. The characterization of the PHB production with the strain H. boliviensis would allow a better optimization of the process and enrich the knowledge about the PHB production from strains different than Cupriavidus necator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Herbert D (1961) The chemical composition of microorganisms as a function of their growth environment. In: Meynell CG, Gooder H (ed) Microbial reaction to the environment, Cambridge University Press, Cambridge, p 391–416

  2. Kim BS, Lee SC, Lee SY, Chang HN, Chang YK, Woo SI (1994) Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol Bioeng 43:892–898

    Article  CAS  Google Scholar 

  3. Ryu HW, Hahn SK, Chang YK, Chang HN (1997) Production of poly(3-hydroxybutyrate) by high cell density fed-batch culture of Alcaligenes eutrophus with phosphate limitation. Biotechnol Bioeng 55:28–32

    Article  CAS  Google Scholar 

  4. Witholt B, Lageveen RG (1992) Process for producing polyesters by fermentation; a process for producing optically active carboxylic acids and esters. US Patent No. 5,135,859. Washington, DC: US Patent and Trademark Office

  5. Ward AC, Rowley BI, Dawes EA (1977) Effect of oxygen and nitrogen limitation on poly-β-hydroxybutyrate biosynthesis in ammonium-grown Azotobacter beijerinckii. J Gen Microbiol 102:61–68

    Article  CAS  Google Scholar 

  6. Nath A, Dixit M, Bandiya A, Chavda S, Desai AJ (2008) Enhanced PHB production and scale up studies using cheese whey in fed batch culture of Methylobacterium sp. ZP24. Bioresour Technol 99:5749–5755

    Article  CAS  Google Scholar 

  7. Lopar M, Spoljaric IV, Atlic A, Koller M, Braunegg G, Horvat P (2013) Five-step continuous production of PHB analyzed by elementary flux, modes, yield space analysis and high structured metabolic model. Biochem Eng J 79:57–70

    Article  CAS  Google Scholar 

  8. Quillaguamán J, Hashim S, Bento F, Mattiasson B, Hatti-Kaul R (2005) Poly(β-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1 using starch hydrolysate as substrate. J Appl Microbiol 99:151–157

    Article  Google Scholar 

  9. Quillaguamán J, Hatti-Kaul R, Mattiasson B, Alvarez MT, Delgado O (2004) Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. Int J Syst Evol Microbiol 54:721–725

    Article  Google Scholar 

  10. Yin J, Chen J-C, Wu Q, Chen G-Q (2014) Halophiles, coming stars for industrial biotechnology. Biotechnol Adv. doi:10.1016/j.biotechadv.2014.10.008

    Google Scholar 

  11. Tan D, Xue YS, Aibaidula G, Chen GQ (2011) Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresour Technol 102:8130–8136

    Article  CAS  Google Scholar 

  12. Quillaguamán J, Guzmán H, Van-Thuoc D, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696

    Article  Google Scholar 

  13. Kessler B, Witholt B (2001) Factors involved in the regulatory network of polyhydroxyalkanoate metabolism. J Biotechnol 86:97–104

    Article  CAS  Google Scholar 

  14. Haywood GW, Anderson AJ, Chu L, Dawes EA (1988) The role of NADH- and NADHP-linked acetoacetyl-CoA reductases in the poly-3-hydroxybutyrate synthesizing organism Alcaligenes eutrophus. FEMS Microbiol Lett 52:259–264

    Article  CAS  Google Scholar 

  15. Lee IY, Kim MK, Chang HN, Park YH (1995) Regulation of poly-beta-hydroxybutyrate biosynthesis by nicotinamide nucleotide in Alcaligenes eutrophus. FEMS Microbiol Lett 131:35–39

    CAS  Google Scholar 

  16. Liu Y-S, Wu J-Y, Ho K-P (2006) Characterization of oxygen transfer conditions and their effects on Phaffia rhodozyma growth and carotenoid production in shake-flask cultures. Biochem Eng J 27:331–335

    Article  Google Scholar 

  17. van’t Riet K (1979) Review of measuring methods and results in nonviscous gas-liquid mass transfer in stirred vessels. Ind Eng Chem Proc DD 18(3):357–364

    Article  Google Scholar 

  18. APHA (1999) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  19. Van-Thuoc D, Guzmán H, Quillaguamán J, Hatti-Kaul R (2010) High productivity of ectoines by Halomonas boliviensis using a combined two-step fed-batch culture and milking process. J Biotechnol 147:46–51

    Article  CAS  Google Scholar 

  20. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  21. Altschul SF, Wootton JC, Gertz EM, Agarwala R, Morgulis A, Schäffer AA, Yu YK (2005) Protein database searches using compositionally adjusted substitution matrices. FEBS J 272:5101–5109

    Article  CAS  Google Scholar 

  22. R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 12 Dec 2015

  23. Jaki T, Wolfsegger MJ (2011) Estimation of pharmacokinetic parameters with the R package PK. Pharm Stat 10:284–288

    Article  Google Scholar 

  24. González-Peñas H, Lu-Chau TA, Moreira MT, Lema JM (2015) Assessment of morphological changes of Clostridium acetobutylicum by flow cytometry during acetone/butanol/ethanol extractive fermentation. Biotechnol Lett 37:577–584

    Article  Google Scholar 

  25. Liccioli T, Chambers PJ, Jiranek V (2011) A novel methodology independent of fermentation rate for assessment of the fructophilic character of wine yeast strains. J Ind Microbiol Biotechnol 38:833–843

    Article  CAS  Google Scholar 

  26. Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus gene for synthesis of poly-β-hydroxybutyric acid and synthesis of PHB in Escherichia coli. J Bacteriol 170:5837–5847

    CAS  Google Scholar 

  27. Slater S, Houmiel KL, Tran M, Mitsky TA, Taylor NB, Padgette SR, Gruys KJ (1998) Multiple β-ketothiolases mediate poly(β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 180:1979–1987

    CAS  Google Scholar 

  28. Peoples OP, Sinskey AJ (1989) Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J Biol Chem 264:15298–15303

    Google Scholar 

  29. Haywood GW, Anderson AJ, Dawes EA (1989) The importance of PHB synthase substrate specificity in polyhydroxyalkanoate synthesis by Alcaligenes eutrophus. FEMS Microbiol Lett 57:1–6

    Article  CAS  Google Scholar 

  30. Oeding V, Schlegel HG (1973) Beta-ketothiolase from Hydrogenomonas eutropha H16 and its significance in the regulation of poly-beta-hydroxybutyrate metabolism. Biochem J 134:239–248

    Article  CAS  Google Scholar 

  31. Quillaguamán J, Van-Thuoc D, Guzmán H, Guzmán D, Martín J, Everest A, Hatti-Kaul R (2008) Poly(3-hydroxybutyrate) production by Halomonas boliviensis in fed-batch culture. Appl Microbiol Biotechnol 78:227–232

    Article  Google Scholar 

  32. Du G-C, Chen J, Gao H-J, Chen Y-G, Lun S-Y (2000) Effects of environmental conditions on cell growth and poly-beta-hydroxybutyrate accumulation in Alcaligenes eutrophus. World J Microbiol Biotechnol 16:9–13

    Article  CAS  Google Scholar 

  33. Jackson FA, Dawes EA (1976) Regulation of the tricarboxylic acid cycle and poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii grown under nitrogen or oxygen limitation. J Gen Microbiol 97:303–312

    Article  CAS  Google Scholar 

  34. Kim GJ, Lee IY, Yoon SC, Shin YC, Park YH (1997) Enhanced yield and a high production of medium-chain-length poly(3-hydroxyalkanoates) in a two-step fed-batch cultivation of Pseudomonas putida by combined use of glucose and octanoate. Enzyme Microb Tech 20:500–505

    Article  CAS  Google Scholar 

  35. Borah B, Thakur PS, Nigam JN (2002) The influence of nutritional and environmental conditions on the accumulation of poly-β-hydroxybutyrate in Bacillus mycoides RLJ B-017. J Appl Microbiol 92:776–783

    Article  CAS  Google Scholar 

  36. Kshirsagar P, Suttar R, Nilegaonkar S, Kulkarni S, Kanekar P (2012) Scale up production of polyhydroxyalkanoate (PHA) at different aeration, agitation and controlled dissolved oxygen levels in fermenter using Halomonas campisalis MCM B-1027. J Biochem Tech 4:512–517

    CAS  Google Scholar 

Download references

Acknowledgments

The authors belong to the Galician Competitive Research Group GRC 2013-032 (program co-funded by FEDER) and to the strategic group CRETUS (AGRUP2015/02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thelmo A. Lu-Chau.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Torreiro, M., Lu-Chau, T.A. & Lema, J.M. Effect of nitrogen and/or oxygen concentration on poly(3-hydroxybutyrate) accumulation by Halomonas boliviensis . Bioprocess Biosyst Eng 39, 1365–1374 (2016). https://doi.org/10.1007/s00449-016-1612-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1612-y

Keywords

Navigation