Log in

The influence of water on the strength of Neapolitan Yellow Tuff, the most widely used building stone in Naples (Italy)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Neapolitan Yellow Tuff (NYT) has been used in construction in Naples (Italy) since the Greeks founded the city—then called Neapolis—in the sixth century BCE. We investigate here whether this popular building stone is weaker when saturated with water, an issue important for assessments of weathering damage and monument preservation. To this end, we performed 28 uniaxial compressive strength measurements on dry and water-saturated samples cored from a block of the lithified Upper Member of the NYT. Our experiments show that the strength of the zeolite-rich NYT is systematically reduced when saturated with water (the ratio of wet to dry strength is 0.63). Complementary experiments show that two other common Neapolitan building stones—Piperno Tuff and the grey Campanian Ignimbrite (both facies of the Campanian Ignimbrite deposit devoid of zeolites)—do not weaken when wet. From these data, and previously published data for tuffs around the globe, we conclude that the water-weakening in NYT is a consequence of the presence of abundant zeolites (the block tested herein contains 46 wt.% of zeolites). These data may help explain weathering damage in NYT building stones (due to rainfall, rising damp, and proximity to the sea or water table) and the observed link between rainfall and landslides, rock falls, and sinkhole formation in Naples, and the weathering of other buildings built from zeolite-rich tuffs worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • ASTM D4404-10, (2010) Standard test method for determination of pore volume and pore volume distribution of soil and rock by mercury intrusion porosimetry, ASTM International, West Conshohocken, PA, www.astm.org

  • Augenti N, Parisi F (2009) Mechanical characterization of tuff masonry. Proc. Protection Hist Build, PROHITECH 9:1579–1584

    Google Scholar 

  • Augenti N, Parisi F (2010) Constitutive models for tuff masonry under uniaxial compression. J Mater Civ Eng 22(11):1102–1111

    Article  Google Scholar 

  • Aversa S, Evangelista A (1998) The mechanical behaviour of a pyroclastic rock: yield strength and “destructuration” effects. Rock Mech Rock Eng 31(1):25–42

    Article  Google Scholar 

  • Aversa S, Evangelista A, Scotto Di Santolo A (2013) Influence of the subsoil on the urban development of Napoli In Proc. Of the 2nd Int Symp On Geotechnical Engineering for the Preservation of Monuments and Historic Sites, 15–43

  • Ayday C, Göktan RM (1990) A preliminary engineering geology study directed to the conservation of Midas monument. In Proc. International Earth Sciences Colloquium on the Aegean Region (IESCA), DE University, Izmir (pp. 102–108)

  • Barberi F, Innocenti F, Lirer L, Munno R, Pescatore T, Santacroce R (1978) The Campanian ignimbrite: a major prehistoric eruption in the Neapolitan area (Italy). Bull Volcanol 41(1):10–31

    Article  Google Scholar 

  • Behre Jr, CD (1929) Volcanic tuffs and sandstones used as building stones in the upper Salmon River valley, Idaho. Contributions to Economic Geology, Part 1

  • Bergmann J, Friedel P, Kleeberg R (1998) BGMN—a new fundamental parameters based Rietveld program for laboratory X-ray sources, its use in quantitative analysis and structure investigations. CPD Newsletter, 20:5–8

  • Broxton DE, Chipera SJ, Byers FM Jr, Rautman CA (1993) Geologic evaluation of six nonwelded tuff sites in the vicinity of Yucca Mountain, Nevada for a surface-based test facility for the Yucca Mountain project (No. LA--12542-MS). Los Alamos National Lab, NM (United States)

  • Calcaterra D, Cappelletti P, Langella A, Morra V, Colella A, de Gennaro R (2000) The building stones of the ancient Centre of Naples (Italy): Piperno from Campi Flegrei. A contribution to the knowledge of a long-time-used stone. J Cult Herit 1(4):415–427

    Article  Google Scholar 

  • Calcaterra D, De Riso R, Nave A, Sgambati D (2002) The role of historical information in landslide hazard assessment of urban areas: the case of Naples (Italy). In Proc. 1st European Conference on Landslides, Prague (pp. 129–135)

  • Calcaterra D, Langella A, De Gennaro R, de’Gennaro M, Cappelletti P (2005) Piperno from Campi Flegrei: a relevant stone in the historical and monumental heritage of Naples (Italy). Environ Geol 47(3):341–352

    Article  Google Scholar 

  • Calcaterra D, Coppin D, De Vita S, Di Vito MA, Orsi G, Palma B, Parise M (2007) Slope processes in weathered volcaniclastic deposits within the city of Naples: the Camaldoli Hill case. Geomorphology 87(3):132–157

    Article  Google Scholar 

  • Calderoni B, Cecere G, Cordasco EA, Guerriero L, Lenza P, Manfredi G (2010) Metrological definition and evaluation of some mechanical properties of post-medieval Neapolitan yellow tuff masonry. J Cult Herit 11(2):163–171

    Article  Google Scholar 

  • Cardellini C, Chiodini G, Frondini F, Avino R, Bagnato E, Caliro S, Lelli M, Rosiello A (2017) Monitoring diffuse volcanic degassing during volcanic unrests: the case of Campi Flegrei (Italy). Sci Rep 7:6757

    Article  Google Scholar 

  • Cejka J, Van Bekkum H, Corma A, Schueth F, (2007) Introduction to zeolite molecular sieves, vol. 168. Elsevier, Amsterdam

  • Çelik MY, Akbulut H, Ergül A (2014) Water absorption process effect on strength of Ayazini tuff, such as the uniaxial compressive strength (UCS), flexural strength and freeze and thaw effect. Environ Earth Sci 71(9):4247–4259

    Article  Google Scholar 

  • Çelik MY, Ergül A (2015) The influence of the water saturation on the strength of volcanic tuffs used as building stones. Environ Earth Sci 74(4):3223–3239

    Article  Google Scholar 

  • Chiodini G, Frondini F, Cardellini C, Granieri D, Marini L, Ventura G (2001) CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. J Geophys Res: Solid Earth 106(B8):16213–16221

    Article  Google Scholar 

  • Chiodini G, Vandemeulebrouck J, Caliro S, D'Auria L, De Martino P, Mangiacapra A, Petrillo Z (2015) Evidence of thermal-driven processes triggering the 2005–2014 unrest at Campi Flegrei caldera. Earth Planet Sci Lett 414:58–67

    Article  Google Scholar 

  • Chiodini G, Selva J, Del Pezzo E, Marsan D, De Siena L, D’Auria L, Bianco F, Caliro S, De Martino P, Ricciolino P, Petrillo Z (2017) Clues on the origin of post-2000 earthquakes at Campi Flegrei caldera (Italy). Sci Rep 7:4472

    Article  Google Scholar 

  • Civetta L, Orsi G, Pappalardo L, Fisher RV, Heiken G, Ort M (1997) Geochemical zoning, mingling, eruptive dynamics and depositional processes—the Campanian ignimbrite, Campi Flegrei caldera, Italy. J Volcanol Geotherm Res 75(3):183–219

    Article  Google Scholar 

  • Cole PD, Scarpati C (1993) A facies interpretation of the eruption and emplacement mechanisms of the upper part of the Neapolitan Yellow Tuff, Campi Flegrei, southern Italy. Bull Volcanol 55(5):311–326

  • Colella C, de’Gennaro M, Aiello R (2001) Use of zeolitic tuff in the building industry. Rev Mineral Geochem 45(1):551–587

    Article  Google Scholar 

  • Colella C (2005) Natural zeolites. Stud Surf Sci Catal 157:13–40

    Article  Google Scholar 

  • Colella A, Di Benedetto C, Calcaterra D, Cappelletti P, D’Amore M, Di Martire D, Graziano SF, Papa L, de Gennaro M, Langella A (2017) The Neapolitan yellow tuff: an outstanding example of heterogeneity. Constr Build Mater 136:361–373

    Article  Google Scholar 

  • Coppola E, Battaglia G, Bucci M, Ceglie D, Colella A, Langella A et al (2002) Neapolitan yellow tuff for the recovery of soils polluted by potential toxic elements in illegal dumps of Campania region. Stud Surf Sci Catal 142:1759–1766

    Article  Google Scholar 

  • Deino AL, Orsi G, de Vita S, Piochi M (2004) The age of the Neapolitan yellow tuff caldera-forming eruption (Campi Flegrei caldera–Italy) assessed by 40 Ar/39 Ar dating method. J Volcanol Geotherm Res 133(1):157–170

    Article  Google Scholar 

  • de’Gennaro M, Colella C (1989) Use of thermal analysis for the evaluation of zeolite content in mixtures of hydrated phases. Thermochim Acta 154(2):345–353

    Article  Google Scholar 

  • de’Gennaro M, Fuscaldo MD, Colella C (1993) Weathering mechanisms of monumental tuff-stone masonries in downtown Naples. Sci Technol Cult Herit 2:53–62

    Google Scholar 

  • de’Gennaro M, Colella C, Langella A, Cappelletti P (1995) Decay of Campanian ignimbrite stoneworks in some monuments of the Caserta area. Sci Technol Cult Herit, 4, 75–86

  • de’Gennaro M, Calcaterra D, Cappelletti P, Langella A, Morra V (2000a) Building stone and related weathering in the architecture of the ancient city of Naples. J Cult Herit 1(4):399–414

    Article  Google Scholar 

  • de’Gennaro M, Cappelletti P, Langella A, Perrotta A, Scarpati C (2000b) Genesis of zeolites in the Neapolitan yellow tuff: geological, volcanological and mineralogical evidence. Contrib Mineral Petrol 139(1):17–35

    Article  Google Scholar 

  • Demarco MM, Jahns E, Rüdrich J, Oyhantcabal P, Siegesmund S (2007) The impact of partial water saturation on rock strength: an experimental study on sandstone [Der Einfluss einer partiellen Wassersättigung auf die mechanischen Gesteinseigenschaften: eine Fallstudie an Sandsteinen]. Z Dtsch Ges Geowiss 158(4):869–882

    Google Scholar 

  • Di Benedetto C, Cappelletti P, Favaro M, Graziano SF, Langella A, Calcaterra D, Colella A (2015) Porosity as key factor in the durability of two historical building stones: Neapolitan yellow tuff and Vicenza stone. Eng Geol 193:310–319

    Article  Google Scholar 

  • Di Martire D, De Rosa M, Pesce V, Santangelo MA, Calcaterra D (2012) Landslide hazard and land management in high-density urban areas of Campania region, Italy. Nat Hazards Earth Syst Sci 12(4):905–926

    Article  Google Scholar 

  • Di Vito MA, Isaia R, Orsi G, Southon J, De Vita S, d’Antonio M, Pappalardo L, Piochi M (1999) Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91(2):221–246

    Article  Google Scholar 

  • Dyke CG, Dobereiner L (1991) Evaluating the strength and deformability of sandstones. In Quarterly Journal of Engineering Geology and Hydrogeology (Vol. 24, No. 1, pp. 123-134). Geological Society of London

  • Erdoğan M (1986) Nevşehir-Ürgup yöresi tüflerinin malzeme jeolojisi açısından araştırılması. Unpublished doctoral dissertation, Istanbul Technical University (ITU), Faculty of Mining, Istanbul

  • Erguler ZA, Ulusay R (2009) Water-induced variations in mechanical properties of clay-bearing rocks. Int J Rock Mech Min Sci 46(2):355–370

    Article  Google Scholar 

  • Erguvanlı K, Yorulmaz M, Çılı F, Ahunbay Z, Erdoğan M (1989) Göreme yapısal koruma ve sağlamlaştırma projesi, E1 Nazar kilisesi, Istanbul Technical University (ITU). Faculty of Mining, Istanbul p 46

    Google Scholar 

  • Evangelista A (1980) Influenza del contenuto d'acqua sul comportamento del tufo giallo napoletano. Atti del XIV Convegno Nazionale di Geotecnica, Firenze

  • Evangelista A, Aversa S (1994) Experimental evidence of non-linear and creep behaviour of pyroclastic rocks. In Visco-plastic behaviour of geomaterials (pp. 55–101). Springer, Vienna

  • Evangelista A, Aversa S, Pescatore TS, Pinto F (2000a) Soft rocks in southern Italy and role of volcanic tuffs in the urbanization of Naples. In Proceedings of the II International Symposium on ‘The Geotechnics of Hard Soils and Soft Rocks’, Napoli (Vol. 3, pp. 1243–1267)

  • Evangelista A, Flora A, Lirer S, Feola A, Maiorano RMS (2000b) Numerical analysis of roof failure mechanisms of cavities in a soft rock. In ISRM International Symposium. International Society for Rock Mechanics

  • Fedele L, Scarpati C, Sparice D, Perrotta A, Laiena F (2016) A chemostratigraphic study of the Campanian ignimbrite eruption (Campi Flegrei, Italy): insights on magma chamber withdrawal and deposit accumulation as revealed by compositionally zoned stratigraphic and facies framework. J Volcanol Geotherm Res 324:105–117

    Article  Google Scholar 

  • Gatta GD, Cappelletti P, Langella A (2010) Crystal-chemistry of phillipsites from the Neapolitan yellow tuff. Eur J Mineral 22(6):779–786

    Article  Google Scholar 

  • Guarino PM, Nisio S (2012) Anthropogenic sinkholes in the territory of the city of Naples (southern Italy). Phys Chem Earth, Parts A/B/C 49:92–102

    Article  Google Scholar 

  • Guarino PM, Santo A, Forte G, De Falco M, Niceforo DMA (2018) Analysis of a database for anthropogenic sinkhole triggering and zonation in the Naples hinterland (southern Italy). Nat Hazards, 91(1), 173–192

  • Hall SA, De Sanctis F, Viggiani G (2006) Monitoring fracture propagation in a soft rock (Neapolitan tuff) using acoustic emissions and digital images. Pure Appl Geophys, 163(10), 2171–2204

  • Hawkes I, Mellor M (1970) Uniaxial testing in rock mechanics laboratories. Eng Geol 4(3):179–285

    Article  Google Scholar 

  • Heap MJ, Lavallée Y, Laumann A, Hess KU, Meredith PG, Dingwell DB (2012) How tough is tuff in the event of fire? Geology 40(4):311–314

    Article  Google Scholar 

  • Heap MJ, Baud P, Meredith PG, Vinciguerra S, Reuschlé T (2014) The permeability and elastic moduli of tuff from Campi Flegrei, Italy: implications for ground deformation modelling. Solid Earth 5(1):25–44

    Article  Google Scholar 

  • Heidari M, Khanlari GR, Torabi-Kaveh M, Kargarian S, Saneie S (2014) Effect of porosity on rock brittleness. Rock Mech Rock Eng 47(2):785–790

    Article  Google Scholar 

  • Heiken, G. (Ed.). (2006). Tuffs: their properties, uses, hydrology, and resources (Vol. 408). Geological Society of America

  • Hoek E, Brown ET (1980) Underground excavations in rock, Institution of Mining and Metallurgy, London

  • Jackson MD, Marra F, Hay RL, Cawood C, Winkler EM (2005) The judicious selection and preservation of tuff and travertine building stone in ancient Rome. Archaeometry 47(3):485–510

    Article  Google Scholar 

  • Jackson MD, Kosso C, Marra F, Hay R (2006) Geological basis of Vitruvius’ empirical observations of material characteristics of rock utilized in Roman masonry. In Proceedings of the Second International Congress of Construction History Queen’s College, University of Cambridge (Vol. 2, 1685–1702)

  • Kleb B, Vásárhelyi B (2003) Test results and empirical formulas of rock mechanical parameters of rhyolitic tuff samples from Eger’s cellars. Acta Geol Hung 46(3):301–312

    Article  Google Scholar 

  • Kilburn CR, De Natale G, Carlino S (2017) Progressive approach to eruption at Campi Flegrei caldera in southern Italy. Nature Communications, 8

  • La Russa MF, Ruffolo SA, de Buergo MÁ, Ricca M, Belfiore CM, Pezzino A, Crisci GM (2017) The behaviour of consolidated Neapolitan yellow tuff against salt weathering. Bull Eng Geol Environ 76(1):115–124

    Article  Google Scholar 

  • Levy SS, O'Neil JR (1989) Moderate-temperature zeolitic alteration in a cooling pyroclastic deposit. Chem Geol 76(3–4):321–326.

  • López-Doncel R, Wedekind W, Dohrmann R, Siegesmund S (2013) Moisture expansion associated to secondary porosity: an example of the Loseros tuff of Guanajuato, Mexico. Environ Earth Sci 69(4):1189–1201

    Article  Google Scholar 

  • Marmoni GM, Martino S, Heap MJ, Reuschlé T (2017a) Gravitational slope-deformation of a resurgent caldera: new insights from the mechanical behaviour of Mt. In: Nuovo tuffs (Ischia Island, Italy), vol 345. Research, Journal of Volcanology and Geothermal, pp 1–20. https://doi.org/10.1016/j.jvolgeores.2017.07.019

    Google Scholar 

  • Marmoni GM, Martino S, Heap MJ, Reuschlé T (2017b) Multiphysics laboratory tests for modelling gravity-driven instabilities at slope scale. Proc Eng 191:142–149

    Article  Google Scholar 

  • Martin RJ, Boyd PJ, Noel JS, Price RH (1994) Bulk and mechanical properties of the paintbrush tuff recovered from borehole USW NRG-6: data report (no. SAND—93-4020). Sandia National Labs., Albuquerque, NM (United States)

  • Mayer K, Scheu B, Montanaro C, Yilmaz TI, Isaia R, Aßbichler D, Dingwell DB (2016) Hydrothermal alteration of surficial rocks at Solfatara (Campi Flegrei): petrophysical properties and implications for phreatic eruption processes. J Volcanol Geotherm Res 320:128–143

    Article  Google Scholar 

  • Montanaro C, Scheu B, Mayer K, Orsi G, Moretti R, Isaia R, Dingwell DB (2016) Experimental investigations on the explosivity of steam-driven eruptions: a case study of Solfatara volcano (Campi Flegrei). J Geophys Res: Solid Earth 121(11):7996–8014

    Article  Google Scholar 

  • Morra V, Calcaterra D, Cappelletti P, Colella A, Fedele L, de' Gennaro R, Langella A, Mercurio M, de' Gennaro M (2010) Urban geology: relationships between geological setting and architectural heritage of the Neapolitan area. In: (Eds.) Marco Beltrando, Angelo Peccerillo, Massimo Mattei, Sandro Conticelli, and Carlo Doglioni, journal of the virtual explorer, volume 36, paper 26, doi: https://doi.org/10.3809/jvirtex.2010.00261

  • Nijland TG, Van Hees RP, Bolondi L (2010) Evaluation of three Italian tuffs (Neapolitan yellow tuff, Tufo Romano and Tufo Etrusco) as compatible replacement stone for Römer tuff in Dutch built cultural heritage. Geol Soc Lond, Spec Publ 333(1):119–127

    Article  Google Scholar 

  • Nocilla N, Evangelista A, Di Santolo AS (2009) Fragmentation during rock falls: two Italian case studies of hard and soft rocks. Rock Mech Rock Eng 42(5):815–833

    Article  Google Scholar 

  • Okubo S, Chu SY (1994) Uniaxial compression creep of Tage and Oya tuff in air-dried and water-saturated conditions. J Soc Mat Sci, Japan 43(490):819–825

    Article  Google Scholar 

  • Orsi G, D'Antonio M, de Vita S, Gallo G (1992) The Neapolitan yellow tuff, a large-magnitude trachytic phreatoplinian eruption: eruptive dynamics, magma withdrawal and caldera collapse. J Volcanol Geotherm Res 53(1):275–287

    Article  Google Scholar 

  • Orsi G, De Vita S, Di Vito M (1996) The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res 74(3–4):179–214

    Article  Google Scholar 

  • Peluso F, Arienzo I (2007) Experimental determination of permeability of Neapolitan yellow tuff. J Volcanol Geotherm Res 160(1):125–136

    Article  Google Scholar 

  • Price RH (1983) Analysis of the rock mechanics properties of volcanic tuff units from Yucca Mountain, Nevada Test Site. Sandia National Laboratories

  • Price RH, Jones AK (1982) Uniaxial and triaxial compression test series on Calico Hills tuff (no. SAND—82-1314). Sandia National Labs., Albuquerque, NM (United States)

  • Rosi M, Vezzoli L, Aleotti P, De Censi M (1996) Interaction between caldera collapse and eruptive dynamics during the Campanian ignimbrite eruption, Phlegraean fields, Italy. Bull Volcanol 57(7):541–554

    Article  Google Scholar 

  • Ross CS, Shannon EV (1924) Mordenite and associated minerals from near Challis, Custer County, Idaho. Proc US Nat Museum 64(19):1–9

  • Scarpati C, Cole P, Perrotta A (1993) The Neapolitan yellow tuff—a large volume multiphase eruption from Campi Flegrei, southern Italy. Bull Volcanol 55(5):343–356

    Article  Google Scholar 

  • Schmitt L, Forsans T, Santarelli FJ (1994) Shale testing and capillary phenomena. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (Vol. 31, No. 5, pp. 411–427). Pergamon

  • Schultz RA, Li Q (1995) Uniaxial strength testing of non-welded Calico Hills tuff, Yucca Mountain, Nevada. Eng Geol 40(3–4):287–299

    Article  Google Scholar 

  • Shakoor A, Barefield EH (2009) Relationship between unconfined compressive strength and degree of saturation for selected sandstones. Environ Eng Geosci 15(1):29–40

    Article  Google Scholar 

  • Stück H, Forgó LZ, Rüdrich J, Siegesmund S, Török A (2008) The behaviour of consolidated volcanic tuffs: weathering mechanisms under simulated laboratory conditions. Environ Geol 56(3–4):699–713

    Article  Google Scholar 

  • Temel A, Gündoğdu MN (1996) Zeolite occurrences and the erionite-mesothelioma relationship in Cappadocia, central Anatolia, Turkey. Mineralium Deposita, 31(6):539–547

  • Topal T, Doyuran V (1997) Engineering geological properties and durability assessment of the Cappadocian tuff. Eng Geol 47(1–2):175–187

    Article  Google Scholar 

  • Topal T, Sözmen B (2003) Deterioration mechanisms of tuffs in Midas monument. Eng Geol 68(3):201–223

    Article  Google Scholar 

  • Török A, Gálos M, Kocsanyi-Kopecsko K (2004) Experimental weathering of rhyolite tuff building stones and the effect of an organic polymer conserving agent. Stone Decay: Its Causes and Controls, 109–127

  • Tuncay E (2009) Rock rupture phenomenon and pillar failure in tuffs in the Cappadocia region (Turkey). Int J Rock Mech Min Sci 46(8):1253–1266

    Article  Google Scholar 

  • Vásárhelyi B (2002) Influence of the water saturation on the strength of volcanic tuffs. In ISRM international symposium-EUROCK 2002. International Society for Rock Mechanics

  • Wedekind W, López-Doncel R, Dohrmann R, Kocher M, Siegesmund S (2013) Weathering of volcanic tuff rocks caused by moisture expansion. Environ Earth Sci 69(4):1203–1224

    Article  Google Scholar 

  • Wohletz K, Orsi G, De Vita S (1995) Eruptive mechanisms of the Neapolitan yellow tuff interpreted from stratigraphie, chemical, and granulometric data. J Volcanol Geotherm Res 67(4):263–290

    Article  Google Scholar 

  • Yassaghi A, Salari-Rad H, Kanani-Moghadam H (2005) Geomechanical evaluations of Karaj tuffs for rock tunnelling in Tehran–Shomal freeway, Iran. Eng Geol 77(1):83–98

    Article  Google Scholar 

  • Yavuz AB (2012) Durability assessment of the Alaçatı tuff (Izmir) in western Turkey. Environ Earth Sci 67(7):1909–1925

    Article  Google Scholar 

  • Zhu W, Baud P, Vinciguerra S, Wong T-f (2011) Micromechanics of brittle faulting and cataclastic flow in Alban Hills tuff. Journal of Geophysical Research: Solid Earth, 116(B6)

Download references

Acknowledgements

This work was funded in part by the “Partenariats Hubert Curien (PHC) GALILEE 2016-2017” grant (project number 37180VC) “Landslide-triggered tsunami hazard in the Mediterranean: improving risk mitigation strategies by understanding natural processes”, implemented by, in France, the Ministry of Europe and Foreign Affairs (MEAE) and the Ministry of Higher Education, Research and Innovation (MESRI) and, in Italy, the Franco-Italian University (UFI) and the Ministry of Education, Universities and Research (MIUR). We wish to thank Bertrand Renaudié for laboratory assistance. We thank Giovanni Orsi for providing the experimental materials, and Balázs Vásárhelyi and Cristian Montanaro for helpful discussions. We also acknowledge the work of the archivists of the Internet Archive digital library (https://archive.org). We are grateful for the constructive comments of two anonymous reviewers, the editor (Laura Pioli), and the executive editor (Andrew Harris). We also thank Marie Jackson and John Oleson for discussions on the texts of Vitruvius.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Heap.

Additional information

Editorial responsibility: L. Pioli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heap, M.J., Farquharson, J.I., Kushnir, A.R.L. et al. The influence of water on the strength of Neapolitan Yellow Tuff, the most widely used building stone in Naples (Italy). Bull Volcanol 80, 51 (2018). https://doi.org/10.1007/s00445-018-1225-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-018-1225-1

Keywords

Navigation