Log in

The flow dynamics of an extremely large volume pyroclastic flow, the 2.08-Ma Cerro Galán Ignimbrite, NW Argentina, and comparison with other flow types

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The 2.08-Ma Cerro Galán Ignimbrite (CGI) represents a >630-km3 dense rock equivalent (VEI 8) eruption from the long-lived Cerro Galán magma system (∼6 Ma). It is a crystal-rich (35–60%), pumice (<10% generally) and lithic-poor (<5% generally) rhyodacitic ignimbrite, lacking a preceding plinian fallout deposit. The CGI is preserved up to 80 km from the structural margins of the caldera, but almost certainly was deposited up to 100 km from the caldera in some places. Only one emplacement unit is preserved in proximal to medial settings and in most distal settings, suggesting constant flow conditions, but where the pyroclastic flow moved into a palaeotopography of substantial valleys and ridges, it interacted with valley walls, resulting in flow instabilities that generated multiple depositional units, often separated by pyroclastic surge deposits. The CGI preserves a widespread sub-horizontal fabric, defined by aligned elongate pumice and lithic clasts, and minerals (e.g. biotite). A sub-horizontal anisotropy of magnetic susceptibility fabric is defined by minute magnetic minerals in all localities where it has been analysed. The CGI is poor in both vent-derived (‘accessory’) lithics and locally derived lithics from the ground surface (‘accidental’) lithics. Locally derived lithics are small (<20 cm) and were not transported far from source points. All data suggest that the pyroclastic flow system producing the CGI was characterised throughout by high sedimentation rates, resulting from high particle concentration and suppressed turbulence at the depositional boundary layer, despite being a low aspect ratio ignimbrite. Based on these features, we question whether high velocity and momentum are necessary to account for extensive flow mobility. It is proposed that the CGI was deposited by a pyroclastic flow system that developed a substantial, high particle concentration granular under-flow, which flowed with suppressed turbulence. High particle concentration and fine-ash content hindered gas loss and maintained flow mobility. In order to explain the contemporaneous maintenance of high particle concentration, high sedimentation rate at the depositional boundary layer and a high level of mobility, it is also proposed that the flow(s) was continuously supplied at a high mass feeding rate. It is also proposed that internal gas pressure within the flow, directed downwards onto the substrate over which the flow was passing, reduced the friction between the flow and the substrate and also enhanced its mobility. The pervasive sub-horizontal fabric of aligned pumice, lithic and even biotite crystals indicates a consistent horizontal shear force existed during transport and deposition in the basal granular flow, consistent with the existence of a laminar, shearing, granular flow regime during the final stages of transport and deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen SR, Cas RAF (1998) Lateral variations within coarse co-ignimbrite lithic breccias of the Kos Plateau Tuff, Greece. Bull Volcanol 59:356–377

    Article  Google Scholar 

  • Allen SR, Cas RAF (2001) Transport of pyroclastic flows across the sea during the explosive, rhyolitic eruption of the Kos Plateau Tuff, Greece. Bull Volcanol 62:441–456

    Article  Google Scholar 

  • Barranblatt GI (2009) Shear flow laminarization and acceleration by suspended heavy particles: a mathematical model and geophysical applications. Comm Appl Math Comp Sci 4:153–175

    Article  Google Scholar 

  • Branney MJ, Kokelaar BP (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geol Soc London Mem 27:152

    Google Scholar 

  • Buesch D (1992) Incorporation and redistribution of locally derived lithic fragments within a pyroclastic flow. Geol Soc Am Bull 104:1193–1207

    Article  Google Scholar 

  • Bursik M, Woods A (1996) The dynamics and thermodynamics of large ash flows. Bull Volcanol 58:175–193. doi:10.1007/s004450050134

    Article  Google Scholar 

  • Cas RAF, Wright JV (1987) Volcanic successions, modern and ancient. Allen and Unwin, London, 527 pp

    Book  Google Scholar 

  • Chadima M, Jelinek V (2009) Anisoft 4.2—Anisotropy data browser

  • De Silva SL (1989) Geochronology and stratigraphy of the ignimbrites from the 21°30′S to 23°30′S portion of the central Andes of northern Chile. J Volcanol Geotherm Res 37:93–131

    Article  Google Scholar 

  • Dellino P, Zimanowski B, Buttner R, La Volpe L, Mele D, Sulpizio R (2007) Large-scale experiments on the mechanics of pyroclastic flows: design, engineering, and final results. J Geophys Res 112:B04202. doi:10.1029/2006JB004313

    Article  Google Scholar 

  • Druitt TH (1998) Pyroclastic density currents. In: Gilbert JS, Sparks RSJ (eds) The physics of explosive eruptions. Geol Soc London Spec Pub 145. Geological Society of London, London, pp 145–182

    Google Scholar 

  • Druitt TH, Avard G, Bruni G, Lettieri P, Maes F (2007) Gas retention in fine-grained pyroclastic flow materials at high temperatures. Bull Volcanol 69:881–901

    Article  Google Scholar 

  • Dufek J, Bergantz GW (2007) Suspended load and bed-load transport of particle-laden gravity currents: the role of particle–bed interaction. Theor Comput Fluid Dyn. doi:10.1007/s00162-007-0041-6

  • Dufek J, Manga M (2008) In situ production of ash in pyroclastic flows. J Geophys Res 113:B09207. doi:10.1029/2007JB00555

    Article  Google Scholar 

  • Dufek J, Wexler J, Manga M (2009) Transport capacity of pyroclastic density currents: experiments and models of substrate-flow interaction. J Geophys Res 114:B11203–B11215. doi:10.1029/2008JB006216

    Article  Google Scholar 

  • Esposti Ongaro T, Widiwijayanti C, Clarke AB, Voight B, Neri A (2011) Multiphase-flow numerical modeling of the 18 May 1980 lateral blast at Mount St. Helens, USA. Geology 39:535–538

    Article  Google Scholar 

  • Fisher RV (1966) Mechanism of deposition from pyroclastic flows. Am J Sci 264:350–363

    Article  Google Scholar 

  • Fisher RV (1979) Models for pyroclastic surges and pyroclastic flows. J Volcanol Geotherm Res 6:305–318

    Article  Google Scholar 

  • Fisher RV (1990) Transport and deposition of a pyroclastic surge across an area of high relief: the 18 May 1980 eruption of Mount St. Helens. Washington Bull Geol Soc Am 102:1038–1054

    Article  Google Scholar 

  • Fisher RV, Orsi G, Ort M, Heiken G (1993) Mobility of a large-volume pyroclastic flow—emplacement of the Campanian ignimbrite, Italy. J Volcanol Geotherm Res 56–3:205–220

    Article  Google Scholar 

  • Folkes CB, Wright HM, Cas RAF, de Silva SL, Lesti C, Viramonte JG (2011a) A re-appraisal of the stratigraphy and volcanology of the Cerro Galán volcanic system, NW Argentina. In: Cas RAF, Cashman K (eds) The Cerro Galan Ignimbrite and Caldera: characteristics and origins of a very large volume ignimbrite and its magma system. Bull Volcanol. doi:10.1007/s00445-011-0459-y

  • Folkes CB, de Silva S, Wright HM, Cas RAF (2011b) Geochemical homogeneity of a long-lived large silicic system: evidence from Cerro Galan Caldera, NW Argentina. In: Cas RAF, Cashman K (eds) The Cerro Galan Ignimbrite and Caldera: characteristics and origins of a very large volume ignimbrite and its magma system. Bull Volcanol. doi:10.1007/s00445-011-0511-y

  • Francis PW, Hammill M, Kretzschmar G, Thorpe RS (1978) The Cerro Galán Caldera, NW Argentina and its tectonic setting. Nature 274:749–751

    Article  Google Scholar 

  • Francis PW, O’Callaghan L, Kretzschmar GA, Thorpe RS, Sparks RSJ, Page RN, de Barrio RE, Gillou G, Gonzalez OE (1983) The Cerro Galán Ignimbrite. Nature 301:51–53

    Article  Google Scholar 

  • Francis PW, Sparks RSJ, Hawkesworth CJ, Thorpe RSJ, Pyle DM, Tait SR, Mantovani MS, McDermott F (1989) Petrology and geochemistry of volcanic rocks of the Cerro Galán Caldera, northwest Argentina. Geol Mag 126:515–547

    Article  Google Scholar 

  • Freundt A, Schmincke H-U (1986) Emplacement of small-volume pyroclastic flows at Laacher See (East-Eifel, Germany). Bull Volcanol 48:39–59

    Article  Google Scholar 

  • Giordano G (1998) The effect of paleo-topography on lithic distribution and facies associations of small volume ignimbrites: an insight into transport and depositional systems of WTT Cupa deposits (Roccamonfina volcano, Italy). J Volcanol Geotherm Res 87:255–273

    Article  Google Scholar 

  • Giordano G, Dobran F (1994) Computer simulations of the Tuscolano Artemisios 2nd Pyroclastic Flow Unit (Alban Hills, Latium, Italy). J Volcanol Geotherm Res 61:69–94

    Article  Google Scholar 

  • Giordano G, De Rita D, Cas RAF, Rodani S (2002) Valley pond and ignimbrite veneer deposits in small volume phreatomagmatic basic ignimbrite, Lago Albano Maar, Colli Albani volcano, Italy: influence of topography. J Volcanol Geotherm Res 118:131–144

    Article  Google Scholar 

  • Girolami L, Druitt TH, Roche O, Khrabrykh Z (2008) Propagation and hindered settling of laboratory ash flows. J Geophys Res 113:B02202

    Article  Google Scholar 

  • Girolami L, RocheO DTH, Corpetti T (2010) Particle velocity fields and depositional processes in laboratory ash flows, with implications for the sedimentation of dense pyroclastic flows. Bull Volcanol 72:747–759

    Article  Google Scholar 

  • Hildreth W (1983) The compositionally zoned eruption of 1912 in the Valley of Ten Thousand Smokes, Katmai National Park, Alaska. J Volcanol Geotherm Res 18:1–18

    Article  Google Scholar 

  • Hongn FD, Seggiaro RE (2001) Hoja Geológica 2566-III, Cachi. Provincias de Salta y Catamarca, Programa Nacional de Cartas Geológicas de la República Argentina. SEGEMAR, Buenos Aires, p 87

    Google Scholar 

  • Jelinek V (1978) Statistical processing of anisotropy of magnetic susceptibility measures on groups of specimens. Studia Geophis Geodet 22:50–62

    Article  Google Scholar 

  • Kay SM, Coira B, Wörner G, Kay RW, Singer BS (2011) Geochemical, isotopic and single crystal 40Ar/39Ar age constraints on the evolution of the Cerro Galán Ignimbrites. In: Cas RAF, Cashman K (eds) The Cerro Galan Ignimbrite and Caldera: characteristics and origins of a very large volume ignimbrite and its magma system. Bull Volcanol. doi:10.1007/s00445-010-0410-7

  • Kieffer SW, Sturtevant B (1988) Erosional furrows formed during the lateral blast at Mount St. Helens, May 18, 1980. J Geophys Res 93:14,793–14,816

    Article  Google Scholar 

  • Kneller BC, Branney MJ (1995) Sustained high-density turbidity currents and the deposition of thick massive sands. Sedimentology 42:607–616

    Article  Google Scholar 

  • Knight MD, Walker GPL, Ellwood BB, Diehl JF (1986) Stratigraphy, paleomagnetism, and magnetic fabric of the Toba Tuffs: constraints on their sources and eruptive styles. J Geophys Res 91:10, 355–10, 382

    Article  Google Scholar 

  • Lesti C (2010) Emplacement temperature and flow direction analysis of large dimension calderas ignimbrites: the Cerro Galán and Toconquis Group ignimbrites (Puna plateau, NW Argentina). Ph.D. thesis, Universita di Roma Tre, Italy 97 pp

  • Lesti C, Porreca M, Giordano G, Mattei M, Cas R, Wright H, Viramonte J (2011) High temperature emplacement of the Cerro Galán and Toconquis Group ignimbrites (Puna plateau, NW Argentina) determined by TRM analyses. In: Cas RAF, Cashman K (eds) The Cerro Galan Ignimbrite and Caldera: characteristics and origins of a very large volume ignimbrite and its magma system. Bull Volcanol. doi:10.1007/s00445-011-0536-2

  • Lindsay JM, de Silva SL, Trumbull R, Emmermann R, Wemmer R (2001) La Pacana caldera, N. Chile: a re-evaluation of the stratigraphy and volcanology of one of the world’s largest resurgent calderas. J Volcanol Geotherm Res 106:145–173

    Article  Google Scholar 

  • Loughlin SC, Calder ES, Clarke A, Cole PD, Luckett R, Mangan MT, Pyle DM, Sparks RSJ, Voight B, Watts RB (2002) Pyroclastic flows and surges generated by the 25 June 1997 dome collapse, Soufriere Hills Volcano, Montserrat. In: Druitt TH, Kokelaar BP (eds) The eruption of Soufriere Hills Volcano, Monstserrat, from 1995 to 1999. Geol Soc London Mem 21. Geological Society of London, London, pp 191–210

    Google Scholar 

  • Middleton GV (1993) Sedimentation from turbidity currents. Ann Rev Earth Planet Sci 29:89–114

    Article  Google Scholar 

  • Nakada S, Fujii T (1993) Preliminary report on the activity at Unzen Volcano (Japan), November 1990–November 1991: dacite lava domes and pyroclastic flows. J Volcanol Geotherm Res 54:319–333

    Article  Google Scholar 

  • Ort MH (1993) Eruptive processes and caldera formation in a nested downsagcollapse caldera: Cerro Panizos, central Andes Mountains. J Volcanol Geotherm Res 56:221–252

    Article  Google Scholar 

  • Ort MH, Orsi G, Pappalardo L, Fisher RV (2003) Anisotropy of magnetic susceptibility studies of depositional processes in the Campanian Ignimbrite, Italy. Bull Volcanol 65:55–72

    Google Scholar 

  • Pittari A, Cas RAF, Edgar C, Nichols H, Wolff JA, Marti J (2006) The influence of palaeotopography on facies architecture and pyroclastic flow processes of a lithic-rich ignimbrite in a high gradient setting: the Abrigo Ignimbrite, Tenerife, Canary Islands. J Volcanol Geotherm Res 152:273–315

    Article  Google Scholar 

  • Pittari A, Cas RAF, Monaghan J, Marti J (2007) Instantaneous dynamic pressure effects on the behaviour of lithic boulders in pyroclastic flows: the Abrigo Ignimbrite, Tenerife, Canary Islands. Bull Volcanol 69:265–279

    Article  Google Scholar 

  • Quane SL, Russell JK (2005) Ranking welding intensity in pyroclastic deposits. Bull Volcanol 67:129–143

    Article  Google Scholar 

  • Roche O, Gilbertson MA, Philips JC, Sparks RSJ (2005) Inviscid behaviour of fines-rich pyroclastic flows inferred from experiments on gas–particle mixtures. Earth Planet Sci Lett 240:401–414

    Article  Google Scholar 

  • Roche O, Gilbertson MA, Philips JC, Sparks RSJ (2006) The influence of particle size on the flow of initially fluidised powders. Powder Technol 166:167–174. doi:10.1016/j.powtec.2006.05.010

    Article  Google Scholar 

  • Roche O, Montserrat S, Nino Y, Tamburrino A (2008) Experimental observations of water-like behavior of initially fluidized dam break granular flows and their relevance for the propagation of ash-rich pyroclastic flows. J Geophys Res 113:B12203. doi:10.1029/2008JB005664

    Article  Google Scholar 

  • Roche O, Montserrat S, Nino Y, Tamburrino A (2010) Pore fluid pressure and internal kinematics of gravitational laboratory air–particle flows: insights into the emplacement dynamics of pyroclastic flows. J Geophys Res 115:B09206. doi:10.1029/2009JB007133

    Article  Google Scholar 

  • Rosi M, Vezzoli L, Aleotti P, De Sensi M (1996) Interaction between caldera collapse and eruptive dynamics during the Campanian Ignimbrite eruption, Phlegrean Fields, Italy. Bull Volcanol 57:541–554

    Article  Google Scholar 

  • Rowley PD, Kuntz MA, MacLeod NS (1981) Pyroclastic flow deposits. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington. US Geol Surv Prof Pap 1250:489–512

  • Schumacher R, Mues-Schumacher U (1996) The Kizilkaya ignimbrite—an unusual low-aspect-ratio ignimbrite from Cappadocia, central Turkey. J Volcanol Geotherm Res 70:107–121

    Article  Google Scholar 

  • Scott WE, Hoblitt RP, Torres RC, Self S, Martinez MML, Nillos T (1996) Pyroclastic flows of the June 15, 1991, climactic eruption of Mount Pinatubo. In: Newhall CG, Punongbayan RS (eds) Fire and mud; eruptions and lahars of Mount Pinatubo. University of Washington Press, Seattle, Philippines, pp 545–570

    Google Scholar 

  • Self S, Goff F, Gardner JN, Wright JV, Kite WM (1986) Explosive rhyolitic volcanism in the Jemez Mountains: vent locations caldera development and relation to regional structure. J Geophys Res 91:1779–1798

    Article  Google Scholar 

  • Smith RL, Bailey RA (1966) The Bandelier Tuff: a study of ash-flow eruption cycles from zoned magma chambers. Bull Volcanol 29:83–103

    Article  Google Scholar 

  • Sparks RSJ (1976) Grain size variations in ignimbrites and implications for transport of pyroclastic flows. Sedimentology 23:147–188

    Article  Google Scholar 

  • Sparks RSJ, Self S, Walker GPL (1973) Products of ignimbrite eruptions. Geology 1:115–118

    Article  Google Scholar 

  • Sparks RSJ, Francis PW, Hamer RD, Pankhurst RJ, O’Callaghan LO, Thorpe RS, Page R (1985) Ignimbrites of the Cerro Galán Caldera, NW Argentina. J Volcanol Geotherm Res 24:205–248

    Article  Google Scholar 

  • Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Revista Geol Chile 31:161–206

    Google Scholar 

  • Tsoar H, Pye K (1987) Dust transport and the question of desert loess formation. Sedimentology 34:139–153

    Article  Google Scholar 

  • Valentine GA (1998) Damage to structures by pyroclastic flows and surges, inferred from nuclear weapons effects. J Volcanol Geotherm Res 87:117–140

    Article  Google Scholar 

  • Valentine GA, Wohletz KH (1989) Numerical models of Plinian eruption columns and pyroclastic flows. J Geophys Res 94:1867–1887. doi:10.1029/JB094iB02p01867

    Article  Google Scholar 

  • Viramonte JG, Galliski MA, Saavedra V, Aparicio A, García Cacho L, Escorza M (1984) El finivulcanismo básico de la Depresión de Arizaro, provincia de Salta, República Argentina. IX Congreso Geológico Argentino, Actas III: 234–254

  • Walker GPL (1983) Ignimbrite types and ignimbrite problems. J Volcanol Geotherm Res 17:281–296

    Article  Google Scholar 

  • Walker GPL, Hemming RF, Wilson CJN (1980) Low aspect ratio ignimbrites. Nature 283:286–287

    Article  Google Scholar 

  • Walker GPL, Wilson CJN, Frogatt PC (1981) An ignimbrite veneer deposit: the trail-marker of a pyroclastic flow. J Volcanol Geotherm Res 9:409–421

    Article  Google Scholar 

  • Watkins SD, Giordano G, Cas RAF, De Rita D (2002) Emplacement processes of the mafic Villa Senni Eruption Unit (VSEU) ignimbrite succession, Colli Albani volcano, Italy. In: Cas RAF, Wildner W (eds) Volcanic and associated regimes—the complexity of volcanic systems. J Volc Geotherm Res 118, pp 173–203

  • Wilson CJN (1985) The Taupo eruption, New Zealand. II. The Taupo ignimbrite. Philos Trans R Soc Lond A 314:229–310

    Article  Google Scholar 

  • Wilson CJN (2001) The 26.5 ka Oruanui eruption, New Zealand: an introduction and overview. J Volcanol Geotherm Res 112:133–174

    Article  Google Scholar 

  • Wilson CJN, Hildreth WE (1997) The Bishop Tuff: new insights from eruptive stratigraphy. J Geol 105:407–439

    Article  Google Scholar 

  • Wilson CJN, Hildreth WE (2003) Assembling an ignimbrite: mechanical and thermal building blocks in the Bishop Tuff, California. J Geol 111:653–670

    Article  Google Scholar 

  • Wilson CJN, Walker GPL (1985) The Taupo eruption, New Zealand I. General aspects. Philos Trans R Soc Lond A 314:199–228

    Google Scholar 

  • Wohletz KH (2001) Pyroclastic surges and compressible two-phase flow. In: Freundt A, Rosi M (eds) From magma to tephra. Developments in volcanology 4. Elsevier, Amsterdam, pp 247–312

    Google Scholar 

  • Woods AV, Bursik MI, Kurbatov AV (1998) The interaction between ash flows and ridges. Bull Volcanol 60:38–51

    Article  Google Scholar 

  • Wright JV, Self S, Fisher RV (1981) Towards a facies model for ignimbrite-forming eruptions. In: Self S, Sparks RSJ (eds) Tephra studies. Reidel, Dordrecht, pp 433–439

    Google Scholar 

  • Wright HMN, Folkes CB, Cas RAF, Cashman KV (2011a) Heterogeneous pumice populations in the 2.08 Ma Cerro Galán ignimbrite: implications for magma recharge and ascent preceding a large volume silicic eruption. In: Cas RAF, Cashman K (eds) The Cerro Galan Ignimbrite and Caldera: characteristics and origins of a very large volume ignimbrite and its magma system. Bull Volcanol. doi:10.1007/s00445-011-0525-5

  • Wright HMN, Lesti C, Cas RAF, Porecca M, Viramonte J, Folkes CB, Giordano G. (2011b) Columnar jointing in vapor phase altered, non-welded Cerro Galan Ignimbrite, Paycuqui, Argentina. In: Cas RAF, Cashman K (eds) The Cerro Galan Ignimbrite and Caldera: characteristics and origins of a very large volume ignimbrite and its magma system. Bull Volcanol. doi:10.1007/s00445-011-0524-6

  • Yamamoto T, Takarada S, Suto S (1993) Pyroclastic flows from the 1991 eruption of Unzen volcano, Japan. Bull Volcanol 55:166–175

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Australian Research Council Discovery Grant Scheme for funding most of the costs of this research through grant DP0663560 to undertake research on the volcanology of the Cerro Galán ignimbrite. Careful reviews by Greg Valentine and Tim Druitt and very helpful editorial suggestions by Kathy Cashman and James White have greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray A. F. Cas.

Additional information

Editorial responsibility: K. Cashman

This paper constitutes part of a special issue:

Cas RAF, Cashman K (eds) The Cerro Galan Ignimbrite and Caldera: characteristics and origins of a very large volume ignimbrite and its magma system

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cas, R.A.F., Wright, H.M.N., Folkes, C.B. et al. The flow dynamics of an extremely large volume pyroclastic flow, the 2.08-Ma Cerro Galán Ignimbrite, NW Argentina, and comparison with other flow types. Bull Volcanol 73, 1583–1609 (2011). https://doi.org/10.1007/s00445-011-0564-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-011-0564-y

Keywords

Navigation