Log in

Can complementarity in water use help to explain diversity–productivity relationships in experimental grassland plots?

  • Ecosystem Ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Positive diversity–productivity relationships have repeatedly been found in experimental grassland plots, but mechanistic explanations are still under debate. We tested whether complementarity for the exploitation of the soil water resource helps to explain these relationships. In the dry summer of 2003, evapotranspiration (ET) was assessed at the Swedish BIODEPTH site using two different approaches: snapshot measurements of canopy surface temperature and simulation of time-accumulated ET by means of a soil water balance model. More diverse plots were characterized by lower surface temperatures and higher accumulated ET. Transgressive overyielding tests revealed that ET in polycultures was higher than in the best-performing monocultures, but this pattern was reversed at high degrees of water stress. Our results indicate that a more complete exploitation of soil water by more diverse grassland systems is on the one hand likely to be a driver for their increased biomass production, but on the other hand causes the more diverse communities to be affected earlier by drought. Nevertheless, the results also suggest that productivity may (at least partially) be maintained under dry conditions due to the higher likelihood of including drought-tolerant species in the more diverse communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen R, Pereira L, Raes D, Smith M (1998) FAO Irrigation and Drainage paper number 56. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO, Rome

    Google Scholar 

  • Belmans C, Wesseling JG, Feddes RA (1983) Simulation of the water balance of a cropped soil: SWATRE. J Hydrol 63:271–286

    Article  Google Scholar 

  • Caldeira MC, Ryel RJ, Lawton JH, Pereira JS (2001) Mechanisms of positive biodiversity-production relationships: insights provided by delta C-13 analysis in experimental mediterranean grassland plots. Ecol Lett 4:439–443

    Article  Google Scholar 

  • de Wit CT (1958) Transpiration and crop yields. Agricultural research reports 64.6. Pudoc, Wageningen

    Google Scholar 

  • De Boeck HJ, Lemmens CMHM, Bossuyt H, Malchair S, Carnol M, Merckx R, Nijs I, Ceulemans R (2006) How do climate warming and plant species richness affect water use in experimental grasslands? Plant Soil 288:246–261

    Article  CAS  Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulissen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Goltze, Göttingen

    Google Scholar 

  • Feddes RA, Kowalik PJ, Zaradny H (1978) Simulation of field water use and crop yield. simulation monographs. Pudoc, Wageningen

    Google Scholar 

  • Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology: a functional approach to common British species. Unwin Hyman, London

    Google Scholar 

  • Hatfield JL, Perrier A, Jackson RD (1983) Estimation of evapotranspiration at one time-of-day using remotely sensed surface temperatures. Agric Water Manage 7:341–350

    Article  Google Scholar 

  • Hector A (2001) Biodiversity and the functioning of grassland ecosystems: multi-site comparisons. In: Kinzig AP, Pacala SW, Tilman D (eds) The functional consequences of biodiversity: empirical progress and theoretical extensions. Princeton University Press, Princeton, pp 71–95

    Google Scholar 

  • Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M., Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell K, Joshi J., Jumpponen A, Korner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton H (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127

    Article  PubMed  CAS  Google Scholar 

  • Hector A, Bazeley-White E, Loreau M, Otway S, Schmid B (2002) Overyielding in grassland communities: testing the sampling effect hypothesis with replicated biodiversity experiments. Ecol Lett 5:502–511

    Article  Google Scholar 

  • Hoogland JC, Belmans C, Feddes RA (1981) Root water uptake model depending on soil water pressure heads and maximum water extraction rate. Acta Hortic 119:123–135

    Google Scholar 

  • Hooper DU, Dukes JS (2004) Overyielding among plant functional groups in a long-term experiment. Ecol Lett 7:95–105

    Article  Google Scholar 

  • Hooper DU, Vitousek PM (1997) The effects of plant composition and diversity on ecosystem processes. Science 277:1302–1305

    Article  CAS  Google Scholar 

  • Hooper DU, Chapin III FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton H, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Huston MA (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110:449–460

    Article  Google Scholar 

  • Jarvis AJ, Davies WJ (1998) The coupled response of stomatal conductance to photosynthesis and transpiration. J Exp Bot 49:399–406

    Article  Google Scholar 

  • Kahmen A, Perner J, Buchmann N (2005) Diversity-dependent productivity in semi-natural grasslands following climate perturbations. Funct Ecol 19:594–601

    Article  Google Scholar 

  • Kinzig AP, Pacala W, Tilman D (2001) The functional consequences of biodiversity: empirical progress and theoretical extensions. Princeton University Press, Princeton

    Google Scholar 

  • Lambers JHR, Harpole WS, Tilman D, Knops J, Reich PB (2004) Mechanisms responsible for the positive diversity–productivity relationship in Minnesota grasslands. Ecol Lett 7:661–668

    Article  Google Scholar 

  • Lambinon J, De Langhe JE, Delvosalle L, Duvigneaud J (1998) Flora van België, het Groothertogdom Luxemburg, Noord-Frankrijk en de aangrenzende gebieden (pteridofyten en spermatofyten). Nationale Plantentuin van België, Meise

  • Leuzinger S, Körner C (2007) Tree species diversity affects canopy leaf temperatures in a mature temperate forest. Agric For Meteorol 146:29–37

    Article  Google Scholar 

  • Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76

    Article  PubMed  CAS  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Ecology–biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    Article  PubMed  CAS  Google Scholar 

  • Loreau M, Naeem S, Inchausti P (2002) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford

    Google Scholar 

  • Lu Z, Lemeur R (1995) Evaluation of daily evapotranspiration estimates from instantaneous measurements. Agric For Meteorol 74:139–154

    Article  Google Scholar 

  • Mulder CPH, Jumpponen A, Hogberg P, Huss-Danell K (2002) How plant diversity and legumes affect nitrogen dynamics in experimental grassland communities. Oecologia 133:412–421

    Article  Google Scholar 

  • Nippert JB, Knapp AK (2007) Soil water partitioning contributes to species coexistence in tallgrass prairie. Oikos 116:1017–1029

    Article  Google Scholar 

  • Palmborg C, Scherer-Lorentzen M, Jumpponen A, Carlsson G, Huss-Danell K, Högberg P (2005) Inorganic soil nitrogen under grassland plant communities of different species composition and diversity. Oikos 110:271–282

    Article  CAS  Google Scholar 

  • Peat H, Fitter A (1994) The ecological flora of the British Isles at the University of York. www document: http://www.york.ac.uk/res/ecoflora/cfm/ecofl/

  • Pfisterer AB, Schmid B (2002) Diversity-dependent production can decrease the stability of ecosystem functioning. Nature 416:84–86

    Article  PubMed  CAS  Google Scholar 

  • Raes D (1982) A summary simulation model of the water budget of a cropped soil. Dissertationes de agricultura number 122. K.U. Leuven, Leuven

  • Raes D, Lemmens H, Van Aelst P, Vanden Bulcke M, Smith M (1988) IRSIS—irrigation scheduling information system, vol 1. Reference manual 3. K.U. Leuven, Leuven

  • Raes D, Geerts S, Kipkorir E, Wellens J, Sahli A (2006) Simulation of yield decline as a result of water stress with a robust soil water balance model. Agric Water Manage 81:335–357

    Article  Google Scholar 

  • Reich PB, Knops J, Tilman D, Craine J, Ellsworth D, Tjoelker M, Lee T, Wedin D, Naeem S, Bahauddin D, Hendrey G, Jose S, Wrage K, Goth J, Bengston W (2001) Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410:809–812

    Article  PubMed  CAS  Google Scholar 

  • Reich PB, Tilman D, Naeem S, Ellsworth DS, Knops J, Craine J, Wedin D, Trost J (2004) Species and functional group diversity independently influence biomass accumulation and its response to CO2 and N. Proc Natl Acad Sci USA 101:10101–10106

    Article  PubMed  CAS  Google Scholar 

  • Rixen C, Mulder CPH (2005) Improved water retention links high species richness with increased productivity in arctic tundra moss communities. Oecologia 146:287–299

    Article  PubMed  Google Scholar 

  • Schmid B, Joshi J, Schläpfer F (2001) Empirical evidence for biodiversity-ecosystem functioning relationships. In: Kinzig AP, Pacala SW, Tilman D (eds) The functional consequences of biodiversity: empirical progress and theoretical extensions. Princeton University Press, Princeton, pp 120–150

    Google Scholar 

  • Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611

    Article  Google Scholar 

  • Silvertown J, Dodd ME, Gowing DJG, Mountford JO (1999) Hydrologically defined niches reveal a basis for species richness in plant communities. Nature 400:61–63

    Article  CAS  Google Scholar 

  • SMHI (2003) Väder och vatten. Swedish Metherological and Hydrological Institute, no. 8 August. Swedish Metherological and Hydrological Institute, Norrkö**

  • Spehn EM, Joshi J, Schmid B, Diemer M, Körner C (2000a) Above-ground resource use increases with plant species richness in experimental grassland ecosystems. Funct Ecol 14:326–337

    Article  Google Scholar 

  • Spehn EM, Joshi J, Schmid B, Alphei J, Körner C (2000b) Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant Soil 224:217–230

    Article  CAS  Google Scholar 

  • Spehn EM, Hector A, Joshi J, Scherer-Lorenzen M, Schmid B, Bazeley-White E, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell K, Jumpponen A, Koricheva J, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Palmborg C, Pereira JS, Pfisterer AB, Prinz A, Read DJ, Schulze ED, Siamantziouras ASD, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (2005) Ecosystem effects of biodiversity manipulations in European grasslands. Ecol Monogr 75:37–63

    Article  Google Scholar 

  • Stocker R, Körner C, Schmid B, Niklaus PA, Leadley PW (1999) A field study of the effects of elevated Co2 and plant species diversity on ecosystem-level gas exchange in a planted calcareous grassland. Glob Chang Biol 5:95–105

    Article  Google Scholar 

  • Tilman D, Lehman CL, Thomson KT (1997) Plant diversity and ecosystem productivity: theoretical considerations. Proc Natl Acad Sci USA 94:1857–1861

    Article  PubMed  CAS  Google Scholar 

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845

    Article  PubMed  CAS  Google Scholar 

  • Tilman D, Reich PB, Knops J (2006) Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629–632

    Article  PubMed  CAS  Google Scholar 

  • Van Ruijven J, Berendse F (2003) Positive effects of plant species diversity on productivity in the absence of legumes. Ecol Lett 6:170–175

    Article  Google Scholar 

  • Van Ruijven J, Berendse F (2005) Diversity–productivity relationships: initial effects, long-term patterns, and underlying mechanisms. Proc Natl Acad Sci 102:695–700

    Article  PubMed  CAS  Google Scholar 

  • Van der Krift TAJ, Kuikman PJ, Möller F, Berendse F (2001) Plant species and nutritional-mediated control over rhizodeposition and root decomposition. Plant Soil 228:191–200

    Article  Google Scholar 

  • Van Peer L, Nijs I, Reheul D, De Cauwer B (2004) Species richness and susceptibility to heat and drought extremes in synthesized grassland ecosystems: compositional vs physiological effects. Funct Ecol 18:769–778

    Article  Google Scholar 

  • Violle C, Lecoeur J, Navas ML (2007) How relevant are instantaneous measurements for assessing resource depletion under plant cover? A test on light and soil water availability in 18 herbaceous communities. Funct Ecol 21:185–190

    Article  Google Scholar 

  • Wagendorp T, Gulinck H, Coppin P, Muys B (2006) Land use impact evaluation in life cycle assessment based on ecosystem thermodynamics. Energy 31:112–125

    Article  Google Scholar 

  • Wang Y, Yu S, Wang J (2007) Biomass-dependent susceptibility to drought in experimental grassland communities. Ecol Lett 10:401–410

    Article  PubMed  Google Scholar 

  • Yachi S, Loreau M (2007) Does complementary resource use enhance ecosystem functioning? A model of light competition in plant communities. Ecol Lett 10:54–62

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the SLU Department of Agricultural Research in northern Sweden for providing the carefully maintained research site. This work was supported by the Ministry of the Flemish Community, Forest and Green Areas Division, TWOL project B&G/27/2002. Jeroen Staelens helped make the figures and Mark Vellend kindly commented on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kris Verheyen.

Additional information

Communicated by Nina Buchmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

442_2008_998_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verheyen, K., Bulteel, H., Palmborg, C. et al. Can complementarity in water use help to explain diversity–productivity relationships in experimental grassland plots?. Oecologia 156, 351–361 (2008). https://doi.org/10.1007/s00442-008-0998-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-008-0998-x

Keywords

Navigation