Log in

Development of respiratory trees in the holothurian Apostichopus japonicus (Aspidochirotida: Holothuroidea)

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The development of respiratory trees in the holothurian Apostichopus japonicus has been studied using light and electron microscopy. Primordial respiratory trees emerge in 2–3-mm-long animals (2 months after fertilization). They arise as two independent outgrowths from the dorsal wall of the anterior part of the cloaca. Upon first emerging and throughout the course of development, the left respiratory tree is longer than the right one. A common base develops in 4-mm-long animals (2–3 months after fertilization). In yearlings, the left respiratory tree grows into gaps between the loops of the intestinal tube interlaced with intestinal hemal vessels. The develo** coelomic and luminal epithelia have ultrastructural peculiarities. The luminal epithelium of respiratory trees has been shown for the first time to comprise nerve cells and their processes. Characteristic structural features of the epithelia are shown to begin develo** as early as in 4-mm-long animals (2–3 months after fertilization). In yearlings, the respiratory trees demonstrate definitive structural patterns and are entirely functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Banerjee S, Sousa AD, Bhat MA (2006) Organization and function of septate junction. Cell Biochem Biophys 46:65–77

    Article  PubMed  CAS  Google Scholar 

  • Bely AE, Nyberg KG (2010) Evolution of animal regeneration: re-emergence of a field. Trends Ecol Evol 25(3):161–170

    Article  PubMed  Google Scholar 

  • Brockes JP (1998) Progenitor cells for regeneration: origin by reversal of the differentiated state. In: Ferretti P, Géraudie J (eds) Cellular and molecular basis of regeneration: from invertebrates to humans. John Wiley & Sons, Chichester, pp 63–77

    Google Scholar 

  • Brockes JP, Kumar A (2008) Comparative aspects of animal regeneration. Ann Review Cell Develop Biol 24:525–549

    Article  CAS  Google Scholar 

  • Carlson BM (1998) Development and regeneration, with special emphasis on the amphibian limb. In: Ferretti P, Géraudie J (eds) Cellular and molecular basis of regeneration: from invertebrates to humans. John Wiley & Sons, Chichester, pp 45–62

    Google Scholar 

  • Dolmatov IYu (1999) Regeneration in echinoderms. Russian J Marine Biol 25:225–233

    Google Scholar 

  • Dolmatov IYu, Ginanova TT (2009) Post-autotomy regeneration of the respiratory trees in the holothurian Apostichopus japonicus (Holothurioidea, Aspidochirotida). Cell Tissue Res 336:41–58

    Article  PubMed  Google Scholar 

  • Dolmatov IYu, Ivantey VA (1993) Histogenesis of longitudinal muscle bands in holothurians. Russian J Develop Biol 24:67–72

    Google Scholar 

  • Dolmatov IYu, Mashanov VS (2007) Regeneration in holothurians. Dalnauka, Vladivostok

    Google Scholar 

  • Dolmatov IYu, Mokretsova ND (1995) Morphology of pentactula of Cucumaria japonica (Dendrochirota, Holothuroidea). Zoologicheskiy Zhurnal 74(1):83–91

    Google Scholar 

  • Dolmatov IYu, Yushin VV (1993) Larval development of Eupentacta fraudatrix (Holothuroidea, Dendrochirota). Asian Marine Biol 10:125–134

    Google Scholar 

  • Dolmatov IYu, Eliseikina MG, Bulgakov AA, Ginanova TT, Lamash NE, Korchagin VP (1996) Muscle regeneration in the holothurian Stichopus japonicus. Roux’s Archive Develop Biol 205:486–493

    Article  Google Scholar 

  • Dolmatov IYu, Mashanov VS, Zueva OR (2007) Derivation of muscles of the Aristotle’s lantern from coelomic epithelia. Cell Tissue Res 327:371–384

    Article  PubMed  Google Scholar 

  • Dolmatov IYu, Nguyen An Khang, Kamenev YaO (2012) Preliminary data about of asexual reproduction, evisceration, and regeneration in holothurians of Nha Trang Bay (Vietnam, South China Sea). Russian J Marine Biol, in press

  • Doyle WL, McNeill GF (1964) The fine structure of the respiratory tree in Cucumaria. Q J Microsc Sci 105:7–11

    Google Scholar 

  • Farmanfarmaian A (1966) The respiratory physiology of echinoderms. In: Boolootian RA (ed) Physiology of echinodermata. Wiley Interscience, New York, pp 245–266

    Google Scholar 

  • Feral JP, Massin C (1982) Digestive system: Holothuroidea. In: Jangoux M, Lawrence JM (eds) Echinoderm nutrition. Balkema, Rotterdam, pp 192–212

    Google Scholar 

  • García-Arrarás JE, Dolmatov IYu (2010) Echinoderms: potential model systems for studies on muscle regeneration. Cur Pharmac Des 16:942–955

    Article  Google Scholar 

  • García-Arrarás JE, Díaz-Miranda L, Torres II, File S, Jiménez LB, Rivera-Bermudez K, Arroyo EJ, Cruz W (1999) Regeneration of the enteric nervous system in the sea cucumber Holothuria glaberrima. J Comp Neurol 406:461–475

    Article  PubMed  Google Scholar 

  • Humason GL (1962) Animal tissue techniques. WH Freeman and Company, San Francisco

    Google Scholar 

  • Hyman LH (1955) The invertebrates: Echinodermata. The coelome Bilateria. McGraw-Hill, New York

    Google Scholar 

  • Levin VS (1982) Japanese sea cucumber. Vladivostok Publisher, Vladivostok

    Google Scholar 

  • Levin VS (2000) Japanese sea cucumber: biology, fisheries, cultivation. Goland, Saint Petersburg

    Google Scholar 

  • Malakhov VV, Cherkasova IV (1991) The embryonal and early development of Stichopus japonicus var. armatus (Aspidochirota, Stichopodidae). Zoologitchesky Zhurnal 70:55–67

    Google Scholar 

  • Malakhov VV, Cherkasova IV (1992) Metamorphosis of the sea cucumber Stichopus japonicus (Aspidochirota, Stichopodidae). Zoologitchesky Zhurnal 71:11–21

    Google Scholar 

  • Mashanov VS, Dolmatov IYu (2000) Developmental morphology of a holothurian, Cucumaria japonica (Dendrochirota, Holothuroidea), a species with accelerated metamorphosis. Invertebrate Reprod Develop 37:137–146

    Article  Google Scholar 

  • Mashanov VS, Frolova LT, Dolmatov IYu (2004) Structure of the digestive tube in the holothurian Eupentacta fraudatrix (Holothuroidea, Dendrochirota). Russian J Marine Biol 30:314–322

    Article  Google Scholar 

  • Murray G, García-Arrarás JE (2004) Myogenesis during holothurian intestinal regeneration. Cell Tissue Res 318:515–524

    Article  PubMed  Google Scholar 

  • Nørrevang A, Winstrand KG (1970) On the occurrence and structure of choanocyte-like cells in some echinoderms. Acta Zool 51:249–270

    Article  Google Scholar 

  • Robertson DA (1972) Volume changes and oxygen extraction efficiency in the holothurian Stichopus mollis. Comp Biochem Physiol 43:795–800

    Article  Google Scholar 

  • Sisak MM, Sander F (1985) Respiratory behaviour of the western Atlantic holothuroidean, at various salinities, temperatures and oxygen tensions. Comp Biochem Physiol 80A:25–30

    Article  Google Scholar 

  • Smiley S (1994) Holothuroidea. In: Harrison FW, Chia FS (eds) Microscopic anatomy of invertebrates, vol 14: Echinodermata. Wiley-Liss Inc, New York, pp 401–471

    Google Scholar 

  • Smiley S, McEuen FS, Chaffee C, Krishnan S (1991) Echinodermata: Holothuroidea. In: Gies AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates, vol 6. Boxwood, Pacific Grove CA, pp 633–750

    Google Scholar 

  • Spirina IS, Dolmatov IYu (2001) Respiratory tree morphology of holothurians Apostichopus japonicus and Cucumaria japonica. Russian J Marine Biol 27:421–429

    Google Scholar 

  • Spirina IS, Dolmatov IYu (2003) Mitotic activity in tissues of the regenerating respiratory tree of the holothurian Apostichopus japonicus (Holothuroidea, Aspidochirota). Russian J Marine Biol 29:123–125

    Article  Google Scholar 

  • Torelle E (1910) Regeneration in Holothuria. Zool Anz 35:15–22

    Google Scholar 

  • Wolcott TG (1981) Inhaling without ribs: the problem of suction in soft-bodied invertebrates. Biol Bull 160:189–197

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the anonymous reviewers, whose valuable critical comments enabled us to improve the quality of the manuscript. Our special thanks are extended to D.A. Andreev and A.V. Korneichuk for technical assistance. This study was supported in part by the Far Eastern Branch of Russian Academy of Sciences (grant № 09-I-P22-02), Russian Foundation for Basic Research (grant № 11-04-00408) and Russian Government (grant № 11.G34.31.0010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Yu. Dolmatov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolmatov, I.Y., Frolova, L.T., Zakharova, E.A. et al. Development of respiratory trees in the holothurian Apostichopus japonicus (Aspidochirotida: Holothuroidea). Cell Tissue Res 346, 327–338 (2011). https://doi.org/10.1007/s00441-011-1280-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1280-9

Keywords

Navigation