Log in

Peptide immunocytochemistry of neurons projecting to the retrocerebral complex in the blow fly, Protophormia terraenovae

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Antisera against a variety of vertebrate and invertebrate neuropeptides were used to characterize neurons with somata in the pars intercerebralis (PI), pars lateralis (PL), and subesophageal ganglion (SEG), designated as PI neurons, PL neurons, and SEG neurons, respectively, all of which project to the retrocerebral complex in the blow fly, Protophormia terraenovae. Immunocytochemistry combined with backfills through the cardiac-recurrent nerve revealed that at least two pairs of PI and SEG neurons for each were FMRFamide-immunoreactive. Immunoreactivity against [Arg7]-corazonin, β-pigment-dispersing hormone (β-PDH), cholecystokinin8, or FMRFamide was observed in PL neurons. Immunoreactive colocalization of [Arg7]-corazonin with β-PDH, [Arg7]-corazonin with cholecystokinin8, or β-PDH with FMRFamide was found in two to three somata in the PL of a hemisphere. Based on their anatomical and immunocytochemical characteristics, PI neurons were classified into two types, PL neurons into six types, and SEG neurons into two types. Fibers in the retrocerebral complex showed [Arg7]-corazonin, β-PDH, cholecystokinin8, and FMRFamide immunoreactivity. Cholecystokinin8 immunoreactivity was also detected in intrinsic cells of the corpus cardiacum. The corpus allatum was densely innervated by FMRFamide-immunoreactive varicose fibers. These results suggest that PI, PL, and SEG neurons release [Arg7]-corazonin, β-PDH, cholecystokinin8, or FMRFamide-like peptides from the corpus cardiacum or corpus allatum into the hemolymph, and that some PL neurons may simultaneously release several neuropeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agui N, Bollenbacher WE, Granger NA, Gilbert LI (1980) Corpus allatum is release site for insect prothoracicotropic hormone. Nature 285:6669–6670

    Article  Google Scholar 

  • Brown MR, Lea AO (1988) FMRFamide- and adipokinetic hormone-like immunoreactivity in the nervous system of the mosquito, Aedes aegypti. J Comp Neurol 270:606–614

    Article  PubMed  CAS  Google Scholar 

  • Brown MR, Graf R, Swiderek KM, Fendley D, Stracker TH, Champagne DE, Lea AO (1998) Identification of a steroidogenic neurohormone in female mosquitoes. J Biol Chem 273:3967–3971

    Article  PubMed  CAS  Google Scholar 

  • Cantera R, Veenstra JA, Nässel DR (1994) Postembryonic development of corazonin-containing neurons and neurosecretory cells in the blowfly, Phormia terraenovae. J Comp Neurol 350:559–572

    Article  PubMed  CAS  Google Scholar 

  • Cao C, Brown MR (2001) Localization of an insulin-like peptide in brains of two flies. Cell Tissue Res 304:317–321

    Article  PubMed  CAS  Google Scholar 

  • Choi YJ, Lee G, Hall JC, Park JH (2005) Comparative analysis of corazonin-encoding genes (crzs) in Drosophila species and functional insights into crz-expressing neurons. J Comp Neurol 482:372–385

    Article  PubMed  CAS  Google Scholar 

  • Davis NT (1985) Serotonin-immunoreactive visceral nerves and neurohemal system in the cockroach Periplaneta americana (L.). Cell Tissue Res 240:593–600

    Article  CAS  Google Scholar 

  • Dircksen H, Zahnow CA, Gaus G, Keller R, Rao KR, Riehm JP (1987) The ultrastructure of nerve endings containing pigment-dispersing hormone (PDH) in crustacean sinus glands: identification by an antiserum against a synthetic PDH. Cell Tissue Res 250:377–387

    Article  CAS  Google Scholar 

  • Duve H, Thorpe A (2003) Neuropeptide co-localization in the lepidopteran frontal ganglion studied by confocal laser scanning microscopy. Cell Tissue Res 311:79–89

    Article  PubMed  CAS  Google Scholar 

  • Duve H, Thorpe A, Scott AG, Johnsem AH, Rehfeld JF, Hines E, East PD (1995) The sulfakinins of the blowfly Calliphora vomitoria: peptide isolation, gene cloning and expression studies. Eur J Biochem 232:633–640

    Article  PubMed  CAS  Google Scholar 

  • Eckert M, Ude J (1983) Immunocytochemical techniques for the identification of peptidergic neurons. In: Strausfeld NJ (ed) Functional neuroanatomy. Springer, Berlin Heidelberg New York, pp 267–301

    Google Scholar 

  • Hamanaka Y, Numata H, Shiga S (2004) Morphology and electrical properties of neurons projecting to the retrocerebral complex in the blow fly, Protophormia terraenovae. Cell Tissue Res 318:403–418

    Article  PubMed  Google Scholar 

  • Hamanaka Y, Yasuyama K, Numata H, Shiga S (2005) Synaptic connections between pigment-dispersing factor-immunoreactive neurons and neurons in the pars lateralis of the blow fly Protophormia terraenovae. J Comp Neurol 491:390–399

    Article  PubMed  Google Scholar 

  • Homberg U, Davis NT, Hildebrand JG (1991) Peptide-immunocytochemistry of neurosecretory cells in the brain and retrocerebral complex of the sphinx moth Manduca sexta. J Comp Neurol 303:35–52

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa T (2003) Firing activities of neurosecretory cells producing diapause hormone and its related peptides in the female silkmoth, Bombyx mori. I. Labial cells. Zool Sci 20:971–978

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa T, Hasegawa K, Shimizu I, Katsuno K, Kataoka H, Suzuki A (1995) Structure of neurosecretory cells with immunoreactive diapause hormone and pheromone biosynthesis activating neuropeptides in the silkmoth, Bombyx mori. Zool Sci 12:703–712

    Article  CAS  Google Scholar 

  • Ichikawa T, Shiota T, Shimizu I, Kataoka H (1996) Functional differentiation of neurosecretory cells with immunoreactive diapause hormone and pheromone biosynthesis activating neuropeptide of the moth, Bombyx mori. Zool Sci 13:21–25

    Article  CAS  Google Scholar 

  • Kim Y-J, Spalovská-Valachová I, Cho K-H, Zitnanova I, Park Y, Adams ME, Žitňan D (2004) Corazonin receptor signaling in ecdysis initiation. Proc Natl Acad Sci USA 101:6704–6709

    Article  PubMed  CAS  Google Scholar 

  • Lee G, Bahn JH, Park JH (2006) Sex- and clock-controlled expression of the neuropeptide F gene in Drosophila. Proc Natl Acad Sci USA 103:12580–12585

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Yin C-M, Stoffolano JG Jr, Garofalo RS (2005) Immunological localization of mosquito ovary ecdysteroidogenic hormone I and fruit fly insulin receptor in adult Phormia regina (Diptera: Calliphoridae). Physiol Biochem Toxicol 98:329–335

    CAS  Google Scholar 

  • Lloyd GL, Woodhead AP, Stay B (2000) Release of neurosecretory granules within the corpus allatum in relation to the regulation of juvenile hormone synthesis in Diploptera punctata. Insect Biochem Mol Biol 30:739–746

    Article  PubMed  CAS  Google Scholar 

  • Manière G, Rondot I, Büllesbach EE, Gautron F, Vanhems E, Delbecque JP (2004) Control of ovarian steroidogenesis by insulin-like peptides in the blowfly (Phormia regina). J Endocrinol 181:147–156

    Article  PubMed  Google Scholar 

  • Matsuo J, Shiga S, Numata H (1997) Role of the corpus allatum in the control of adult diapause in the blow fly, Protophormia terraenovae. J Insect Physiol 43:211–216

    Article  PubMed  CAS  Google Scholar 

  • McCormick J, Nichols R (1993) Spatial and temporal expression identify dromyosuppressin as a brain-gut peptide in Drosophila melanogaster. J Comp Neurol 338:279–288

    Article  Google Scholar 

  • Mizoguchi A, Ishizaki H, Nagasawa H, Kataoka H, Isogai A, Tamura S, Suzuki A, Fu**o M, Kitada C (1987) A monoclonal antibody against a synthetic fragment of bombyxin (4K-prothoracicotropic hormone) from the silkmoth, Bombyx mori: characterization and immunohistochemistry. Mol Cell Endocrinol 51:227–235

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi A, Oka T, Kataoka H, Nagasawa H, Suzuki A, Ishizaki H (1990) Immunohistochemical localization of prothoracicotropic hormone-producing neurosecretory cells in the brain of Bombyx mori. Dev Growth Differ 32:591–598

    Article  Google Scholar 

  • Nässel DR (2002) Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Prog Neurobiol 68:1–84

    Article  PubMed  Google Scholar 

  • Nässel DR, Shiga S, Mohrherr CJ, Rao KR (1993) Pigment-dispersing hormone-like peptide in the nervous system of the flies Phormia and Drosophila: immunocytochemistry and partial characterization. J Comp Neurol 331:183–198

    Article  PubMed  Google Scholar 

  • Nichols R, Lim IA (1996) Spatial and temporal immunocytochemical analysis of drosulfakinin (Dsk) gene products in the Drosophila melanogaster central nervous system. Cell Tissue Res 283:107–116

    Article  PubMed  CAS  Google Scholar 

  • Nichols R, Schneuwly SA, Dixon JE (1988) Identification and characterization of a Drosophila homologue to the vertebrate neuropeptide cholecystokinin. J Biol Chem 263:12167–12170

    PubMed  CAS  Google Scholar 

  • Numata H, Shiga S (1995) Induction of adult diapause by photoperiod and temperature in Protophormia terraenovae (Diptera: Calliphoridae) in Japan. Environ Entomol 24:1633–1636

    Google Scholar 

  • O’Brien MA, Katahira EJ, Flanagan TR, Arnold LW, Haughton G, Bollenbacher WE (1988) A monoclonal antibody to the insect prothoracicotropic hormone. J Neurosci 8:3247–3257

    PubMed  CAS  Google Scholar 

  • O’Brien MA, Schneider LE, Taghert PH (1991) In situ hybridization analysis of the FMRFamide neuropeptide gene in Drosophila. II. Constancy in the cellular pattern of expression during metamorphosis. J Comp Neurol 304:623–638

    Article  PubMed  CAS  Google Scholar 

  • Orchard I, Loughton BG (1985) Neurosecretion. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 7. Endocrinology I. Pergamon, Oxford, pp 61–107

    Google Scholar 

  • Orchard I, Lange AB, Bendena WG (2001) FMRFamide-related peptides: a multifunctional family of structurally related neuropeptides in insects. Adv Insect Physiol 28:267–329

    Article  CAS  Google Scholar 

  • Predel R, Wegener C, Russell WK, Tichy SE, Russell DH, Nachman RJ (2004) Peptidomics of CNS-associated neurohemal system of adult Drosophila melanogaster: a mass spectrometric survey of peptides from individual flies. J Comp Neurol 474:379–392

    Article  PubMed  CAS  Google Scholar 

  • Raabe M (1989) Recent developments in insect neurohormones. Plenum, New York

    Google Scholar 

  • Raikhel AS, Brown MR, Belles X (2005) Hormonal control of reproductive process. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol 3. Endocrinology. Elsevier, Amsterdam, pp 433–491

    Google Scholar 

  • Rajashekhar KP, Singh RN (1994) Neuroarchitecture of the tritocerebrum of Drosophila melanogaster. J Comp Neurol 349:633–645

    Article  PubMed  CAS  Google Scholar 

  • Rao KR, Riehm JP (1993) Pigment-dispersing hormones. Ann NY Acad Sci 680:78–88

    Article  PubMed  CAS  Google Scholar 

  • Renn SCP, Park JH, Rosbash M, Hall JC, Taghert PH (1999) A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99:791–802

    Article  PubMed  CAS  Google Scholar 

  • Richer S, Stoffolano JG Jr, Yin C-M, Nichols R (2000) Innervation of dromyosuppressin (DMS) immunoreactive processes and effect of DMS and benzethonium chloride on the Phormia regina (Meigen) crop. J Comp Neurol 421:136–142

    Article  PubMed  CAS  Google Scholar 

  • Schneider LE, Taghert PH (1988) Isolation and characterization of a Drosophila gene that encodes multiple neuropeptides related to Phe-Met-Arg-Phe-NH2 (FMRFamide). Proc Natl Acad Sci USA 85:1993–1997

    Article  PubMed  CAS  Google Scholar 

  • Schneider LE, Sun ET, Garland DJ, Taghert PH (1993) An immunocytochemical study of the FMRFamide neuropeptide gene products in Drosophila. J Comp Neurol 337:446–460

    Article  PubMed  CAS  Google Scholar 

  • Shiga S, Numata H (2000) The roles of neurosecretory neurons in the pars intercerebralis and pars lateralis in reproductive diapause of the blow fly, Protophormia terraenovae. Naturwissenschaften 87:125–128

    Article  PubMed  CAS  Google Scholar 

  • Shiga S, Toyoda I, Numata H (2000) Neurons projecting to the retrocerebral complex of the adult blow fly, Protophormia terraenovae. Cell Tissue Res 299:427–439

    Article  PubMed  CAS  Google Scholar 

  • Shiga S, Davis NT, Hildebrand JG (2003) Role of neurosecretory cells in the photoperiodic induction of pupal diapause of the tobacco hornworm Maduca sexta. J Comp Neurol 462:275–285

    Article  PubMed  Google Scholar 

  • Siegmund T, Korge G (2001) Innervation of the ring gland of Drosophila melanogaster. J Comp Neurol 431:481–491

    Article  PubMed  CAS  Google Scholar 

  • Stay B, Chan KK, Woodhead AP (1992) Allatostatin-immunoreactive neurons projecting to the corpora allata of adult Diploptera punctata. Cell Tissue Res 270:15–23

    Article  PubMed  CAS  Google Scholar 

  • Strand FL (1999) Neuropeptides: regulators of physiological processes. MIT, Cambridge

    Google Scholar 

  • Tanaka Y, Hua Y-J, Roller L, Tanaka S (2002) Corazonin reduces the spinning rate in the silkworm, Bombyx mori. J Insect Physiol 48:707–714

    Article  PubMed  CAS  Google Scholar 

  • Toyoda I, Shiga S, Numata H (1999) Role of the median neurosecretory cells in the ovarian development of the blow fly Protophormia terraenovae. Zool Sci 16:187–191

    Article  Google Scholar 

  • Veenstra JA, Davis NT (1993) Localization of corazonin in the nervous system of the cockroach Periplaneta americana. Cell Tissue Res 274:57–64

    Article  PubMed  CAS  Google Scholar 

  • Vilim FS, Price DA, Lesser W, Kupfermann I, Weiss KR (1996) Costorage and corelease of modulatory peptide cotransmitters with partially antagonistic actions on the accessory radula closer muscle of Aplysia californica. J Neurosci 16:8092–8104

    PubMed  CAS  Google Scholar 

  • Vilim FS, Cropper EC, Price DA, Kupfermann I, Weiss KR (2000) Peptide cotransmitter release from motorneuron B16 in Aplysia californica: costorage, corelease, and functional implications. J Neurosci 20:2036–2042

    PubMed  CAS  Google Scholar 

  • Weber E, Evans CJ, Samuelsson SJ, Barchas JD (1981) Novel peptide neuronal system in rat brain and pituitary. Science 214:1248–1251

    Article  PubMed  CAS  Google Scholar 

  • Weiss KR, Brezina V, Cropper EC, Hooper SL, Miller MW, Probst WC, Vilim FS, Kupfermann I (1992) Peptidergic co-transmission in Aplysia: functional implications for rhythmic behaviors. Experientia 48:456–463

    Article  PubMed  CAS  Google Scholar 

  • White K, Hurteau T, Punsal P (1986) Neuropeptide-FMRFamide-like immunoreactivity in Drosophila: development and distribution. J Comp Neurol 247:430–438

    Article  PubMed  CAS  Google Scholar 

  • Wise S, Davis NT, Tyndale E, Noveral J, Folwell MG, Bedian V, Emery IF, Siwicki KK (2002) Neuroanatomical studies of period gene expression in the hawkmoth, Manduca sexta. J Comp Neurol 447:366–380

    Article  PubMed  CAS  Google Scholar 

  • Yamashita O (1996) Diapause hormone of the silkmoth, Bombyx mori: structure, gene expression and function. J Insect Physiol 42:669–679

    Article  CAS  Google Scholar 

  • Yu CG, Stay B, Joshi S, Tobe SS (1993) Allatostatin content of brain, corpora allata and haemolymph at different developmental stages of the cockroach, Diploptera punctata: quantitation by ELISA and bioassay. J Insect Physiol 39:111–122

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. N.T. Davis (University of Arizona) for reading through the manuscript and giving critical comments and for a gift of antisera. We also thank Dr. J. A. Veenstra (Université Bordeaux), Dr. M.R. Brown (University of Georgia), Dr. H. Dircksen (University of Bonn), Dr. A. Mizoguchi (Nagoya University), Dr. D.R. Nässel (Stockholm University), and Dr. B. Stay (University of Iowa) for their generous gifts of antisera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakiko Shiga.

Additional information

This work was supported by a Grant-in-Aid for Scientific Research C (17570065) from the Japan Society for the Promotion of Science (to S.S.) and a Grant-in-Aid for Scientific Research B (16370038) from the Japan Society for the Promotion of Science (to H.N.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamanaka, Y., Tanaka, S., Numata, H. et al. Peptide immunocytochemistry of neurons projecting to the retrocerebral complex in the blow fly, Protophormia terraenovae . Cell Tissue Res 329, 581–593 (2007). https://doi.org/10.1007/s00441-007-0433-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0433-3

Keywords

Navigation