Log in

Clinical practice

The management of hyperammonemia

  • Review
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Hyperammonemia is a life-threatening condition which can affect patients at any age. Elevations of ammonia in plasma indicate its increased production and/or decreased detoxification. The hepatic urea cycle is the main pathway to detoxify ammonia; it can be defective due to an inherited enzyme deficiency or secondary to accumulated toxic metabolites or substrate depletion. Clinical signs and symptoms in hyperammonemia are unspecific but they are mostly neurological. Thus, in any unexplained change in consciousness or in any unexplained encephalopathy, hyperammonemia must be excluded as fast as possible. Any delay in recognition and start of treatment of hyperammonemia may have deleterious consequences for the patient. Treatment largely depends on the underlying cause but is, at least in pediatric patients, mainly aimed at establishing anabolism to avoid endogenous protein breakdown and amino acid imbalances. In addition, pharmacological treatment options exist to improve urea cycle function or to remove nitrogen, but their use depend on the underlying disorder. To improve the prognosis of acute hyperammonemia, an increased awareness of this condition is probably more needed than anything else. Likewise, the immediate start of appropriate therapy is of utmost importance. This review focuses on a better understanding of factors leading to ammonia elevations and on practical aspects related to diagnosis and treatment in order to improve clinical management of hyperammonemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Albrecht J, Norenberg MD (2006) Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology 44:788–794

    Article  CAS  PubMed  Google Scholar 

  2. Avery GS, Davies EF, Brogden RN (1972) Lactulose: a review of its therapeutic and pharmacological properties with particular reference to ammonia metabolism and its mode of action of portal systemic encephalopathy. Drugs 4:7–48

    Article  CAS  PubMed  Google Scholar 

  3. Bachmann C (2006) Hyperammonaemia: review of current treatment strategies. In: Bachmann C, Häberle J, Leonard JV (eds) Pathophysiology and management of hyperammonemia. SPS Publications, Heilbronn, pp 157–173

    Google Scholar 

  4. Bachmann C (2002) Mechanisms of hyperammonemia. Clin Chem Lab Med 40:653–662

    Article  CAS  PubMed  Google Scholar 

  5. Bachmann C (2003) Outcome and survival of 88 patients with urea cycle disorders: a retrospective evaluation. Eur J Pediatr 162:410–416

    Article  PubMed  Google Scholar 

  6. Bachmann C (2003) Inherited hyperammonemias. In: Blau N, Duran M, Blaskovic ME, Gibson KM (eds) Physician’s guide to the laboratory diagnosis of metabolic diseases. Springer, Berlin, pp 261–276

    Google Scholar 

  7. Barrueto F, Hack JB (2001) Hyperammonemia and coma without hepatic dysfunction induced by valproate therapy. Acad Emerg Med 8:999–1001

    Article  PubMed  Google Scholar 

  8. Barsotti RJ (2001) Measurement of ammonia in blood. J Pediatr 138:S11–19, discussion S19-20

    Article  CAS  PubMed  Google Scholar 

  9. Batshaw ML, MacArthur RB, Tuchman M (2001) Alternative pathway therapy for urea cycle disorders: 20 years later. J Pediatr 138:S46–54, discussion S54-45

    Article  CAS  PubMed  Google Scholar 

  10. Braissant O (2010) Current concepts in the pathogenesis of urea cycle disorders. Mol Genet Metab 100:S3–S12

    Article  CAS  PubMed  Google Scholar 

  11. Braissant O (2010) Ammonia toxicity to the brain: effects on creatine metabolism and transport and protective roles of creatine. Mol Genet Metab 100:S53–58

    Article  CAS  PubMed  Google Scholar 

  12. Brusilow S, Horwich A (2001) Urea cycle enzymes. In: Scriver C, Beaudet A, Sly W, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1909–1963

    Google Scholar 

  13. Brusilow SW, Maestri NE (1996) Urea cycle disorders: diagnosis, pathophysiology, and therapy. Adv Pediatr 43:127–170

    CAS  PubMed  Google Scholar 

  14. Brusilow SW (2002) Hyperammonemic encephalopathy. Medicine 81:240–249

    Article  PubMed  Google Scholar 

  15. Butterworth RF (1998) Effects of hyperammonaemia on brain function. J Inherit Metab Dis 21(Suppl 1):6–20

    Article  PubMed  Google Scholar 

  16. Butterworth RF (2002) Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab Brain Dis 17:221–227

    Article  CAS  PubMed  Google Scholar 

  17. Camacho JA, Obie C, Biery B, Goodman BK, Hu CA, Almashanu S, Steel G, Casey R, Lambert M, Mitchell GA, Valle D (1999) Hyperornithinaemia-hyperammonaemia-homocitrullinuria syndrome is caused by mutations in a gene encoding a mitochondrial ornithine transporter. Nat Genet 22:151–158

    Article  CAS  PubMed  Google Scholar 

  18. Colombo JP, Peheim E, Kretschmer R, Dauwalder H, Sidiropoulos D (1984) Plasma ammonia concentrations in newborns and children. Clin Chim Acta 138:283–291

    Article  CAS  PubMed  Google Scholar 

  19. Conn HO, Leevy CM, Vlahcevic ZR, Rodgers JB, Maddrey WC, Seeff L, Levy LL (1977) Comparison of lactulose and neomycin in the treatment of chronic portal-systemic encephalopathy. A double blind controlled trial. Gastroenterology 72:573–583

    CAS  PubMed  Google Scholar 

  20. Connelly A, Cross JH, Gadian DG, Hunter JV, Kirkham FJ, Leonard JV (1993) Magnetic resonance spectroscopy shows increased brain glutamine in ornithine carbamoyl transferase deficiency. Pediatr Res 33:77–81

    Article  CAS  PubMed  Google Scholar 

  21. Cooper AJ, Plum F (1987) Biochemistry and physiology of brain ammonia. Physiol Rev 67:440–519

    CAS  PubMed  Google Scholar 

  22. Cooper AJ (2001) Role of glutamine in cerebral nitrogen metabolism and ammonia neurotoxicity. Ment Retard Dev Disabil Res Rev 7:280–286

    Article  CAS  PubMed  Google Scholar 

  23. da Fonseca-Wollheim F (1990) Preanalytical increase of ammonia in blood specimens from healthy subjects. Clin Chem 36:1483–1487

    PubMed  Google Scholar 

  24. de Keijzer MH, Jakobs BS, Brandts RW, Hofs MT, Trijbels FJ, Smeitink JA (1997) Rapid and reliable measurement of highly elevated blood ammonia concentrations in children. Eur J Clin Chem Clin Biochem 35:853–854

    PubMed  Google Scholar 

  25. Dixon M (2007) Disorders of amino acid metabolism, organic acidemias and urea cycle defects. Organic acidemias and urea cycle disorders. In: Shaw V, Lawson M (eds) Clinical pediatric dietetics. Blackwell, Oxford, pp 357–389

    Google Scholar 

  26. Enns GM, Berry SA, Berry GT, Rhead WJ, Brusilow SW, Hamosh A (2007) Survival after treatment with phenylacetate and benzoate for urea-cycle disorders. New Engl J Med 356:2282–2292

    Article  CAS  PubMed  Google Scholar 

  27. Feillet F, Leonard JV (1998) Alternative pathway therapy for urea cycle disorders. J Inherit Metab Dis 21(Suppl 1):101–111

    Article  CAS  PubMed  Google Scholar 

  28. Felig P (1975) Amino acid metabolism in man. Ann Rev Biochem 44:933–955

    Article  CAS  PubMed  Google Scholar 

  29. Felipo V, Butterworth RF (2002) Neurobiology of ammonia. Progr Neurobiol 67:259–279

    Article  CAS  Google Scholar 

  30. Gropman A (2010) Brain imaging in urea cycle disorders. Mol Genet Metab 100:S20–30

    Article  CAS  PubMed  Google Scholar 

  31. Gropman AL, Summar M, Leonard JV (2007) Neurological implications of urea cycle disorders. J Inherit Metab Dis 30:865–879

    Article  CAS  PubMed  Google Scholar 

  32. Gropman AL, Fricke ST, Seltzer RR, Hailu A, Adeyemo A, Sawyer A, van Meter J, Gaillard WD, McCarter R, Tuchman M, Batshaw M (2008) 1H MRS identifies symptomatic and asymptomatic subjects with partial ornithine transcarbamylase deficiency. Mol Genet Metabol 95:21–30

    Article  CAS  Google Scholar 

  33. Gropman AL, Gertz B, Shattuck K, Kahn IL, Seltzer R, Krivitsky L, Van Meter J (2010) Diffusion tensor imaging detects areas of abnormal white matter microstructure in patients with partial ornithine transcarbamylase deficiency. Am J Neuroradiol 31:1719–1723

    Article  CAS  PubMed  Google Scholar 

  34. Guffon N, Schiff M, Cheillan D, Wermuth B, Haberle J, Vianey-Saban C (2005) Neonatal hyperammonemia: the N-carbamoyl-l-glutamic acid test. J Pediatr 147:260–262

    Article  CAS  PubMed  Google Scholar 

  35. Hamer HM, Knake S, Schomburg U, Rosenow F (2000) Valproate-induced hyperammonemic encephalopathy in the presence of topiramate. Neurology 54:230–232

    CAS  PubMed  Google Scholar 

  36. Häussinger D (1990) Nitrogen metabolism in liver: structural and functional organization and physiological relevance. Biochem J 267:281–290

    PubMed  Google Scholar 

  37. Häussinger D (1990) Liver glutamine metabolism. J Parenter Enteral Nutr 14:56S–62S

    Article  Google Scholar 

  38. Häussinger D, Görg B (2010) Interaction of oxidative stress, astrocyte swelling and cerebral ammonia toxicity. Curr Opin Clin Nutrit Metab Care 13:87–92

    Article  Google Scholar 

  39. Kircheis G, Nilius R, Held C, Berndt H, Buchner M, Gortelmeyer R, Hendricks R, Kruger B, Kuklinski B, Meister H, Otto HJ, Rink C, Rosch W, Stauch S (1997) Therapeutic efficacy of l-ornithine-l-aspartate infusions in patients with cirrhosis and hepatic encephalopathy: results of a placebo-controlled, double-blind study. Hepatology 25:1351–1360

    Article  CAS  PubMed  Google Scholar 

  40. Kuntze JR, Weinberg AC, Ahlering TE (1985) Hyperammonemic coma due to Proteus infection. J Urol 134:972–973

    CAS  PubMed  Google Scholar 

  41. Laube GF, Superti-Furga A, Losa M, Buttiker V, Berger C, Neuhaus TJ (2002) Hyperammonaemic encephalopathy in a 13-year-old boy. Eur J Pediatr 161:163–164

    Article  PubMed  Google Scholar 

  42. Leonard JV (2001) The nutritional management of urea cycle disorders. J Pediatr 138:S40–44, discussion S44-45

    Article  CAS  PubMed  Google Scholar 

  43. Leonard JV (2006) Inherited hyperammonaemias. In: Blau N, Hoffmann GF, Leonard JV, Clarke JTR (eds) Physician’s guide to the treatment and follow-up of metabolic diseases. Springer, Berlin, pp 117–127

    Chapter  Google Scholar 

  44. Lichter-Konecki U (2008) Profiling of astrocyte properties in the hyperammonaemic brain: shedding new light on the pathophysiology of the brain damage in hyperammonaemia. J Inherit Metab Dis 31:492–502

    Article  CAS  PubMed  Google Scholar 

  45. Lipton SA (2006) Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov 5:160–170

    Article  CAS  PubMed  Google Scholar 

  46. Long CL, Jeevanandam M, Kinney JM (1978) Metabolism and recycling of urea in man. Am J Clin Nutr 31:1367–1382

    CAS  PubMed  Google Scholar 

  47. Marcaggi P, Coles JA (2001) Ammonium in nervous tissue: transport across cell membranes, fluxes from neurons to glial cells, and role in signalling. Progr Neurobiol 64:157–183

    Article  CAS  Google Scholar 

  48. Meijer AJ, Lamers WH, Chamuleau RA (1990) Nitrogen metabolism and ornithine cycle function. Physiol Rev 70:701–748

    CAS  PubMed  Google Scholar 

  49. Nassogne MC, Heron B, Touati G, Rabier D, Saudubray JM (2005) Urea cycle defects: management and outcome. J Inherit Metab Dis 28:407–414

    Article  CAS  PubMed  Google Scholar 

  50. Nicolaides P, Liebsch D, Dale N, Leonard J, Surtees R (2002) Neurological outcome of patients with ornithine carbamoyltransferase deficiency. Arch Dis Child 86:54–56

    Article  CAS  PubMed  Google Scholar 

  51. Palmieri L, Pardo B, Lasorsa FM, del Arco A, Kobayashi K, Iijima M, Runswick MJ, Walker JE, Saheki T, Satrustegui J, Palmieri F (2001) Citrin and aralar1 are Ca(2+)-stimulated aspartate/glutamate transporters in mitochondria. EMBO J 20:5060–5069

    Article  CAS  PubMed  Google Scholar 

  52. Picca S, Dionisi-Vici C, Abeni D, Pastore A, Rizzo C, Orzalesi M, Sabetta G, Rizzoni G, Bartuli A (2001) Extracorporeal dialysis in neonatal hyperammonemia: modalities and prognostic indicators. Pediatr Nephrol 16:862–867

    Article  CAS  PubMed  Google Scholar 

  53. Plecko B (2006) Hyperammonemia caused by secondary impairment of the urea cycle. In: Bachmann C, Häberle J, Leonard JV (eds) Pathophysiology and management of hyperammonemia. SPS publications, Heilbronn, pp 100–113

    Google Scholar 

  54. Scaglia F (2010) New insights in nutritional management and amino acid supplementation in urea cycle disorders. Mol Genet Metab 100:S72–76

    Article  CAS  PubMed  Google Scholar 

  55. Scaglia F, Carter S, O’Brien WE, Lee B (2004) Effect of alternative pathway therapy on branched chain amino acid metabolism in urea cycle disorder patients. Mol Genet Metab 81:S79–85

    Article  CAS  PubMed  Google Scholar 

  56. Toda K, Li J, Dasgupta PK (2006) Measurement of ammonia in human breath with a liquid-film conductivity sensor. Anal Chem 78:7284–7291

    Article  CAS  PubMed  Google Scholar 

  57. Tuchman M (1992) The clinical, biochemical, and molecular spectrum of ornithine transcarbamylase deficiency. J Lab Clin Med 120:836–850

    CAS  PubMed  Google Scholar 

  58. Tuchman M, Lee B, Lichter-Konecki U, Summar ML, Yudkoff M, Cederbaum SD, Kerr DS, Diaz GA, Seashore MR, Lee HS, McCarter RJ, Krischer JP, Batshaw ML (2008) Cross-sectional multicenter study of patients with urea cycle disorders in the United States. Mol Genet Metab 94:397–402

    Article  CAS  PubMed  Google Scholar 

  59. Tuchman M, Morizono H, Rajagopal BS, Plante RJ, Allewell NM (1998) The biochemical and molecular spectrum of ornithine transcarbamylase deficiency. J Inherit Metab Dis 21(Suppl 1):40–58

    Article  CAS  PubMed  Google Scholar 

  60. Tuchman M, Yudkoff M (1999) Blood levels of ammonia and nitrogen scavenging amino acids in patients with inherited hyperammonemia. Mol Genet Metab 66:10–15

    Article  CAS  PubMed  Google Scholar 

  61. Tuchman M, Caldovic L, Daikhin Y, Horyn O, Nissim I, Nissim I, Korson M, Burton B, Yudkoff M (2008) N-carbamylglutamate markedly enhances ureagenesis in N-acetylglutamate deficiency and propionic acidemia as measured by isotopic incorporation and blood biomarkers. Pediatr Res 64:213–217

    Article  CAS  PubMed  Google Scholar 

  62. Walker V (2009) Ammonia toxicity and its prevention in inherited defects of the urea cycle. Diab Obes Metab 11:823–835

    Article  CAS  Google Scholar 

  63. Walser M, Bodenlos LJ (1959) Urea metabolism in man. J Clin Invest 38:1617–1626

    Article  CAS  PubMed  Google Scholar 

  64. Whitelaw A, Bridges S, Leaf A, Evans D (2001) Emergency treatment of neonatal hyperammonaemic coma with mild systemic hypothermia. Lancet 358:36–38

    Article  CAS  PubMed  Google Scholar 

  65. Wilcken B (2004) Problems in the management of urea cycle disorders. Mol Genet Metab 81:S86–91

    Article  CAS  PubMed  Google Scholar 

  66. Windmueller HG (1982) Glutamine utilization by the small intestine. Adv Enzym Rel Areas Mol Biol 53:201–237

    CAS  Google Scholar 

  67. Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252

    CAS  PubMed  Google Scholar 

  68. Wu G, Haynes TE, Li H, Meininger CJ (2000) Glutamine metabolism in endothelial cells: ornithine synthesis from glutamine via pyrroline-5-carboxylate synthase. Comp Biochem Physiol 126:115–123

    CAS  Google Scholar 

  69. Zwingmann C, Butterworth R (2005) An update on the role of brain glutamine synthesis and its relation to cell-specific energy metabolism in the hyperammonemic brain: further studies using NMR spectroscopy. Neurochem Internat 47:19–30

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author acknowledges the contribution of the reviewers of this manuscript and in particular the help of Claude Bachmann during revision of this review.

Conflicts of interest

The author has no financial conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Häberle.

Additional information

Additional note

The author is currently steering an international working group (including Nathalie Boddaert, Paris; Alberto Burlina, Padua; Anupam Chakrapani, Birmingham; Carlo Dionisi-Vici, Rome; Marjorie Dixon, London; Martina Huemer, Bregenz; Daniela Karall, Innsbruck; Martin Lindner, Heidelberg; Vicente Rubio, Valencia; Aude Servais, Paris; Pablo Sanjurjo, Bilbao; René Santer, Hamburg; Vassili Valayannopoulos, Paris) on “Guidelines for the diagnosis and treatment of urea cycle disorders”. The author is much obliged to all members of the working group who helped to evaluate the literature and actively discussed many issues closely related to hyperammonemia. The Guideline will be released to many European National Metabolic Societies and as a publication in 2011 and might provide additional information for the reader interested in management of hyperammonemia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Häberle, J. Clinical practice. Eur J Pediatr 170, 21–34 (2011). https://doi.org/10.1007/s00431-010-1369-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-010-1369-2

Keywords

Navigation