Log in

A frontal but not parietal neural correlate of auditory consciousness

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Hemodynamic correlates of consciousness were investigated in humans during the presentation of a dichotic sequence inducing illusory auditory percepts with features analogous to visual multistability. The sequence consisted of a variation of the original stimulation eliciting the Deutsch’s octave illusion, created to maintain a stable illusory percept long enough to allow the detection of the underlying hemodynamic activity using functional magnetic resonance imaging (fMRI). Two specular 500 ms dichotic stimuli (400 and 800 Hz) presented in alternation by means of earphones cause an illusory segregation of pitch and ear of origin which can yield up to four different auditory percepts per dichotic stimulus. Such percepts are maintained stable when one of the two dichotic stimuli is presented repeatedly for 6 s, immediately after the alternation. We observed hemodynamic activity specifically accompanying conscious experience of pitch in a bilateral network including the superior frontal gyrus (SFG, BA9 and BA10), medial frontal gyrus (BA6 and BA9), insula (BA13), and posterior lateral nucleus of the thalamus. Conscious experience of side (ear of origin) was instead specifically accompanied by bilateral activity in the MFG (BA6), STG (BA41), parahippocampal gyrus (BA28), and insula (BA13). These results suggest that the neural substrate of auditory consciousness, differently from that of visual consciousness, may rest upon a fronto-temporal rather than upon a fronto-parietal network. Moreover, they indicate that the neural correlates of consciousness depend on the specific features of the stimulus and suggest the SFG-MFG and the insula as important cortical nodes for auditory conscious experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnott SR, Binns MA, Grady CL, Alain C (2004) Assessing the auditory dual-pathway model in humans. NeuroImage 22:401–408

    Article  PubMed  Google Scholar 

  • Balduzzi D, Tononi G (2009) Qualia: the geometry of integrated information. PLoS Comput Biol 5(8):e1000462

    Article  PubMed Central  PubMed  Google Scholar 

  • Beauregard M, Lévesque J, Bourgouin P (2001) Neural correlates of conscious self-regulation of emotion. J Neurosci 21:RC165

    CAS  PubMed  Google Scholar 

  • Bekinschtein TA et al (2009) Neural signature of the conscious processing of auditory regularities. Proc Natl Acad Sci USA 106(5):1672–1677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bidet-Caulet A, Bertrand O (2009) Neurophysiological mechanisms involved in auditory perceptual organization. Front Neurosci 3(2):182–191

    Article  PubMed Central  PubMed  Google Scholar 

  • Blake R, Logothetis NK (2002) Visual competition. Nature Rev Neurosci 3:13–23

    Article  CAS  Google Scholar 

  • Brancucci A, Tommasi L (2011) “Binaural rivalry”: dichotic listening as a tool for the investigation of the neural correlate of consciousness. Brain Cogn 76:218–224

    Article  PubMed  Google Scholar 

  • Brancucci A, Babiloni C, Rossini PM, Romani GL (2005) Right hemisphere specialization for intensity discrimination of musical and speech sounds. Neuropsychologia 43:1916–1923

    Article  PubMed  Google Scholar 

  • Brancucci A, Padulo C, Tommasi L (2009) “Octave illusion” or “Deutsch’s illusion”? Psychol Res 73(3):303–307

    Article  PubMed  Google Scholar 

  • Brancucci A, Franciotti R, D’Anselmo A, Della Penna S, Tommasi L (2011a) The sound of consciousness: neural underpinnings of auditory perception. J Neuroscience 31(46):16611–16618

    Article  CAS  PubMed  Google Scholar 

  • Brancucci A, Lugli V, Santucci A, Tommasi L (2011b) Ear and pitch segregation in Deutsch’s octave illusion persist following switch from stimulus alternation to repetition. J Acoust Soc Am 130(4):2179–2185

    Article  PubMed  Google Scholar 

  • Chambers CD, Mattingley JB, Moss SA (2005) Does selective attention influence the octave illusion? Perception 34(2):217–229

    Article  PubMed  Google Scholar 

  • Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173

    Article  CAS  PubMed  Google Scholar 

  • Craig AD (2009) How do you feel-now? The anterior insula and human awareness. Nat Rev Neurosci 10(1):59–70

    Article  CAS  PubMed  Google Scholar 

  • Crick F, Koch C (2005) What is the function of the claustrum? Philos Trans R Soc Lond B 360:1271–1279

    Article  Google Scholar 

  • de Graaf TA, Hsieh PJ, Sack AT (2012) The ‘correlates’ in neural correlates of consciousness. Neurosci Biobehav Rev 36(1):191–197

    Article  PubMed  Google Scholar 

  • Dehaene S, Changeux JP (2011) Experimental and theoretical approaches to conscious processing. Neuron 70:200–227

    Article  CAS  PubMed  Google Scholar 

  • Deutsch D (1974) An auditory illusion. Nature 251:307–309

    Article  CAS  PubMed  Google Scholar 

  • Deutsch D (1981) The octave illusion and auditory perceptual integration. In: Tobias JV, Schubert ED (eds) Hearing research and theory, Volume 1(1), Academic Press, New York, pp 99–142

  • Deutsch D (1983) The octave illusion in relation to handedness and familial handedness background. Neuropsychologia 21(3):289–293

    Article  CAS  PubMed  Google Scholar 

  • Di Francesco M (2008) Consciousness and the self. Funct Neurol 23(4):179–187

    PubMed  Google Scholar 

  • Edelman GM, Gally JA (2001) Degeneracy and complexity in biological systems. Proc Natl Acad Sci USA 98(24):13763–13768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Edelman GM, Gally JA, Baars BJ (2011) Biology of consciousness. Frontiers Psychol 2(4):1–7

    Google Scholar 

  • Eriksson J, Larsson A, Ahlstrom KR, Nyberg L (2007) similar frontal and distinct posterior cortical regions mediate visual and auditory perceptual awareness. Cereb Cortex 17:760–765

    Article  PubMed  Google Scholar 

  • Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC (1995) Improved assessment of significant activation in functional magnetic resonance imaging fMRI: use of a cluster-size threshold. Magn Reson Med 33:636–647

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ, Williams S, Howard R, Frackowiak RSJ, Turner R (1996) Movement related effects in fMRI time series. Magn Reson Med 35(3):346–355

    Article  CAS  PubMed  Google Scholar 

  • Hajnal JV et al (1994) Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med 31(3):283–291

    Article  CAS  PubMed  Google Scholar 

  • Hall DA et al (1999) Sparse temporal sampling in auditory fMRI. Hum Brain Mapp 7:213–223

    Article  CAS  PubMed  Google Scholar 

  • James W (1890) The principles of psychology. Holt, New York

    Book  Google Scholar 

  • Koch C, Tsuchiya N (2007) Attention and consciousness: two distinct brain processes. Trends Cogn Sci 11:16–22

    Article  PubMed  Google Scholar 

  • Koch C, Tsuchiya N (2012) Attention and consciousness: related yet different. Trends Cogn Sci 16(2):103–105

    Article  PubMed  Google Scholar 

  • Leopold DA, Logothetis NK (1996) Activity changes in early visual cortex reflect monkeys’ percepts during binocular rivalry. Nature 379:549–553

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Lauer KK, Ward BD, Li SJ, Hudetz AG (2013) Differential effects of deep sedation with propofol on the specific and nonspecific thalamocortical systems: a fMRI study. Anesthesiology 118:59–69

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Llinás R, Ribary U, Contreras D, Pedroarena C (1998) The neuronal basis for consciousness. Philos Trans R Soc Lond B Biol Sci 353(1377):1841–1849

    Article  PubMed Central  PubMed  Google Scholar 

  • Lumer ED, Friston KJ, Rees D (1998) Neural correlates of perceptual rivalry in the human brain. Science 280:1930–1934

    Article  CAS  PubMed  Google Scholar 

  • Malonek D et al (1997) Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation. Proc Natl Acad Sci (USA) 94:14826–14831

    Article  CAS  Google Scholar 

  • Pins D, Ffytche D (2003) The neural correlates of conscious vision. Cereb Cortex 13:461–474

    Article  PubMed  Google Scholar 

  • Plourde G et al (2006) Cortical processing of complex auditory stimuli during alterations of consciousness with the general anesthetic propofol. Anesthesiology 104(3):448–457

    Article  PubMed  Google Scholar 

  • Price CJ, Friston KJ (2002) Degeneracy and cognitive anatomy. Trends Cogn Sci 6(10):416–421

    Article  PubMed  Google Scholar 

  • Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci (USA) 97(22):11800–11806

    Article  CAS  Google Scholar 

  • Rees G (2007) Neural correlates of the contents of visual awareness in humans. Philos Trans R Soc Lond B Biol Sci 362(1481):877–886

    Article  PubMed Central  PubMed  Google Scholar 

  • Rees G, Kreiman G, Koch C (2002) Neural correlates of consciousness in humans. Nature Rev Neurosci 3:261–270

    Article  CAS  Google Scholar 

  • Salmaso D, Longoni AM (1985) Problems in the assessment of hand preference. Cortex 21(4):533–549

    Article  CAS  PubMed  Google Scholar 

  • Sergent C, Dehaene S (2004) Neural processes underlying conscious perception: experimental findings and a global neuronal workspace framework. J Physiol Paris 98(4–6):374–384

    Article  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1998) Coplanar stereotaxic atlas of the human brain. Thieme, New York

    Google Scholar 

  • Taylor JG (2001) The central role of the parietal lobes in consciousness. Conscious Cogn 10(3):379–417

    Article  CAS  PubMed  Google Scholar 

  • Tong F, Meng M, Blake R (2006) Neural bases of binocular rivalry. Trends Cogn Sci 10(11):502–511

    Article  PubMed  Google Scholar 

  • Tononi G (2004) An information integration theory of consciousness. BMC Neuroscience 5:42

    Article  PubMed Central  PubMed  Google Scholar 

  • Tononi G, Koch C (2008) The neural correlates of consciousness: an update. Ann N Y Acad Sci 1124:239–261

    Article  PubMed  Google Scholar 

  • Tononi G, Srinivasan R, Russel DP, Edelman GM (1998) Correlates of conscious perception by frequency-tagged neuromagnetic responses. Proc Natl Acad Sci USA 95:3198–3203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tononi G, Sporns O, Edelman GM (1999) Measures of degeneracy and redundancy in biological networks. Proc Natl Acad Sci USA 96(6):3257–3262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vercoe BL (1992) A manual for the audio processing system and supporting programs with tutorials (Media Labs). Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Woods DL, Alain C (2009) Functional imaging of human auditory cortex. Curr Opin Otolaryngol Head Neck Surg 17(5):407–411

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research is part of the project EDCBNL (Evolution and Development of Cognitive, Behavioral and Neural Lateralization, 2006–2010), supported by the Commission of the European Communities within the framework of the specific research and technological development programme “Integrating and strengthening the European Research Area” (initiative “What it means to be human”), through a financial grant to LT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Brancucci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brancucci, A., Lugli, V., Perrucci, M.G. et al. A frontal but not parietal neural correlate of auditory consciousness. Brain Struct Funct 221, 463–472 (2016). https://doi.org/10.1007/s00429-014-0918-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0918-2

Keywords

Navigation