Log in

The neurobiology of speech perception decline in aging

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Speech perception difficulties are common among elderlies; yet the underlying neural mechanisms are still poorly understood. New empirical evidence suggesting that brain senescence may be an important contributor to these difficulties has challenged the traditional view that peripheral hearing loss was the main factor in the etiology of these difficulties. Here, we investigated the relationship between structural and functional brain senescence and speech perception skills in aging. Following audiometric evaluations, participants underwent MRI while performing a speech perception task at different intelligibility levels. As expected, with age speech perception declined, even after controlling for hearing sensitivity using an audiological measure (pure tone averages), and a bioacoustical measure (DPOAEs recordings). Our results reveal that the core speech network, centered on the supratemporal cortex and ventral motor areas bilaterally, decreased in spatial extent in older adults. Importantly, our results also show that speech skills in aging are affected by changes in cortical thickness and in brain functioning. Age-independent intelligibility effects were found in several motor and premotor areas, including the left ventral premotor cortex and the right supplementary motor area (SMA). Age-dependent intelligibility effects were also found, mainly in sensorimotor cortical areas, and in the left dorsal anterior insula. In this region, changes in BOLD signal modulated the relationship between age and speech perception skills suggesting a role for this region in maintaining speech perception in older ages. These results provide important new insights into the neurobiology of speech perception in aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ackermann H, Riecker A (2004) The contribution of the insula to motor aspects of speech production: a review and a hypothesis. Brain Lang 89(2):320–328. doi:10.1016/S0093-934X(03)00347-X

    PubMed  Google Scholar 

  • Anderson B, Harvey T (1996) Alterations in cortical thickness and neuronal density in the frontal cortex of Albert Einstein. Neurosci Lett 210(3):161–164

    CAS  PubMed  Google Scholar 

  • Argall BD, Saad ZS, Beauchamp MS (2006) Simplified intersubject averaging on the cortical surface using SUMA. Hum Brain Mapp 27(1):14–27

    PubMed  Google Scholar 

  • Baron RM, Kenny DA (1986) The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol 51(6):1173–1182

    CAS  PubMed  Google Scholar 

  • Berkowitz AL, Ansari D (2010) Expertise-related deactivation of the right temporoparietal junction during musical improvisation. Neuroimage 49(1):712–719. doi:10.1016/j.neuroimage.2009.08.042

    PubMed  Google Scholar 

  • Binder JR, Liebenthal E, Possing ET, Medler DA, Ward BD (2004) Neural correlates of sensory and decision processes in auditory object identification. Nat Neurosci 7(3):295–301. doi:10.1038/nn1198

    CAS  PubMed  Google Scholar 

  • Boersma P, Weenink D (2011) Praat: doing phonetics by computer [computer program] (version 5.2.10). University of Amsterdam, Amsterdam. http://www.praat.org/

  • Bohland JW, Guenther FH (2006) An fMRI investigation of syllable sequence production. Neuroimage 32(2):821–841. doi:10.1016/j.neuroimage.2006.04.173

    PubMed  Google Scholar 

  • Braga RM, Wilson LR, Sharp DJ, Wise RJ, Leech R (2013) Separable networks for top-down attention to auditory non-spatial and visuospatial modalities. Neuroimage 74:77–86. doi:10.1016/j.neuroimage.2013.02.023

    PubMed Central  PubMed  Google Scholar 

  • Burianova H, Lee Y, Grady CL, Moscovitch M (2013) Age-related dedifferentiation and compensatory changes in the functional network underlying face processing. Neurobiol Aging 34(12):2759–2767. doi:10.1016/j.neurobiolaging.2013.06.016

    PubMed  Google Scholar 

  • Callan DE, Tsytsarev V, Hanakawa T, Callan AM, Katsuhara M, Fukuyama H, Turner R (2006) Song and speech: brain regions involved with perception and covert production. Neuroimage 31(3):1327–1342. doi:10.1016/j.neuroimage.2006.01.036

    PubMed  Google Scholar 

  • Callan D, Callan A, Gamez M, Sato MA, Kawato M (2010) Premotor cortex mediates perceptual performance. Neuroimage 51(2):844–858. doi:10.1016/j.neuroimage.2010.02.027

    PubMed  Google Scholar 

  • Campbell KL, Grady CL, Ng C, Hasher L (2012) Age differences in the frontoparietal cognitive control network: implications for distractibility. Neuropsychologia 50(9):2212–2223. doi:10.1016/j.neuropsychologia.2012.05.025

    PubMed  Google Scholar 

  • Chee MW, Chen KH, Zheng H, Chan KP, Isaac V, Sim SK, Chuah LY, Schuchinsky M, Fischl B, Ng TP (2009) Cognitive function and brain structure correlations in healthy elderly East Asians. Neuroimage 46(1):257–269. doi:10.1016/j.neuroimage.2009.01.036

    PubMed  Google Scholar 

  • Chen JJ, Rosas HD, Salat DH (2011) Age-associated reductions in cerebral blood flow are independent from regional atrophy. Neuroimage 55(2):468–478. doi:10.1016/j.neuroimage.2010.12.032

    PubMed Central  PubMed  Google Scholar 

  • Chen JJ, Salat DH, Rosas HD (2012) Complex relationships between cerebral blood flow and brain atrophy in early Huntington’s disease. Neuroimage 59(2):1043–1051. doi:10.1016/j.neuroimage.2011.08.112

    PubMed Central  PubMed  Google Scholar 

  • Cooper JC Jr, Gates GA (1991) Hearing in the elderly–the Framingham cohort, 1983-1985: Part II. Prevalence of central auditory processing disorders. Ear Hear 12(5):304–311

    PubMed  Google Scholar 

  • Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58(3):306–324. doi:10.1016/j.neuron.2008.04.017

    PubMed Central  CAS  PubMed  Google Scholar 

  • Corfield DR, Murphy K, Josephs O, Fink GR, Frackowiak RS, Guz A, Adams L, Turner R (1999) Cortical and subcortical control of tongue movement in humans: a functional neuroimaging study using fMRI. J Appl Physiol 86(5):1468–1477

    CAS  PubMed  Google Scholar 

  • Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173

    CAS  PubMed  Google Scholar 

  • Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage 9(2):179–194

    CAS  PubMed  Google Scholar 

  • De Leon MJ, George AE, Golomb J, Tarshish C, Convit A, Kluger A, De Santi S, McRae T, Ferris SH, Reisberg B, Ince C, Rusinek H, Bobinski M, Quinn B, Miller DC, Wisniewski HM (1997) Frequency of hippocampal formation atrophy in normal aging and Alzheimer’s disease. Neurobiol Aging 18(1):1–11

    PubMed  Google Scholar 

  • Deiber MP, Ibanez V, Sadato N, Hallett M (1996) Cerebral structures participating in motor preparation in humans: a positron emission tomography study. J Neurophysiol 75(1):233–247

    CAS  PubMed  Google Scholar 

  • Desai R, Liebenthal E, Possing ET, Waldron E, Binder JR (2005) Volumetric versus surface-based alignment for localization of auditory cortex activation. NeuroImage 26(4):1019–1029

    PubMed  Google Scholar 

  • Dickerson BC, Fenstermacher E, Salat DH, Wolk DA, Maguire RP, Desikan R, Pacheco J, Quinn BT, Van der Kouwe A, Greve DN, Blacker D, Albert MS, Killiany RJ, Fischl B (2008) Detection of cortical thickness correlates of cognitive performance: reliability across MRI scan sessions, scanners, and field strengths. Neuroimage 39(1):10–18. doi:10.1016/j.neuroimage.2007.08.042

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dronkers NF (1996) A new brain region for coordinating speech articulation. Nature 384(6605):159–161. doi:10.1038/384159a0

    CAS  PubMed  Google Scholar 

  • Ducharme S, Albaugh MD, Hudziak JJ, Botteron KN, Nguyen TV, Truong C, Evans AC, Karama S (2013) Anxious/depressed symptoms are linked to right ventromedial prefrontal cortical thickness maturation in healthy children and young adults. Cereb Cortex. doi:10.1093/cercor/bht151

    PubMed Central  Google Scholar 

  • Eden GF, Joseph JE, Brown HE, Brown CP, Zeffiro TA (1999) Utilizing hemodynamic delay and dispersion to detect fMRI signal change without auditory interference: the behavior interleaved gradients technique. Magn Reson Med Off J Soc Magnetic Resonance in Med Soc Magn Reson Med 41(1):13–20

    Google Scholar 

  • Edmister WB, Talavage TM, Ledden PJ, Weisskoff RM (1999) Improved auditory cortex imaging using clustered volume acquisitions. Hum Brain Mapp 7(2):89–97

    CAS  PubMed  Google Scholar 

  • Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97(20):11050–11055. doi:10.1073/pnas.200033797

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis: II: Inflation, flattening, and a surface-based coordinate system. NeuroImage 9(2):195–207

    CAS  PubMed  Google Scholar 

  • Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14(1):11–22. doi:10.1093/cercor/bhg087

    PubMed  Google Scholar 

  • Fjell AM, Walhovd KB (2010) Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci 21(3):187–221

    PubMed  Google Scholar 

  • Fjell AM, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N, Agartz I, Salat DH, Greve DN, Fischl B, Dale AM, Walhovd KB (2009) High consistency of regional cortical thinning in aging across multiple samples. Cereb Cortex 19(9):2001–2012. doi:10.1093/cercor/bhn232

    PubMed Central  PubMed  Google Scholar 

  • Frisina DR, Frisina RD (1997) Speech recognition in noise and presbycusis: relations to possible neural mechanisms. Hear Res 106(1–2):95–104

    CAS  PubMed  Google Scholar 

  • Galantucci B, Fowler CA, Turvey MT (2006) The motor theory of speech perception reviewed. Psychon Bull Rev 13(3):361–377

    PubMed Central  PubMed  Google Scholar 

  • Gates GA, Mills JH (2005) Presbycusis. Lancet 366(9491):1111–1120. doi:10.1016/S0140-6736(05)67423-5

    PubMed  Google Scholar 

  • Ghosh SS, Tourville JA, Guenther FH (2008) A neuroimaging study of premotor lateralization and cerebellar involvement in the production of phonemes and syllables. J Speech Lang Hear Res (JSLHR) 51(5):1183–1202. doi:10.1044/1092-4388(2008/07-0119

    PubMed Central  Google Scholar 

  • Gordon-Salant S, Fitzgibbons PJ (2001) Sources of age-related recognition difficulty for time-compressed speech. J Speech Lang Hear Res (JSLHR) 44(4):709–719

    CAS  Google Scholar 

  • Grabski K, Lamalle L, Vilain C, Schwartz JL, Vallee N, Tropres I, Baciu M, Le Bas JF, Sato M (2012) Functional MRI assessment of orofacial articulators: neural correlates of lip, jaw, larynx, and tongue movements. Hum Brain Mapp 33(10):2306–2321. doi:10.1002/hbm.21363

    PubMed  Google Scholar 

  • Grabski K, Tremblay P, Gracco VL, Girin L, Sato M (2013) A mediating role of the auditory dorsal pathway in selective adaptation to speech: a state-dependent transcranial magnetic stimulation study. Brain Res 1515:55–65. doi:10.1016/j.brainres.2013.03.024

    CAS  PubMed  Google Scholar 

  • Gracco VL, Tremblay P, Pike B (2005) Imaging speech production using fMRI. Neuroimage 26(1):294–301. doi:10.1016/j.neuroimage.2005.01.033

    PubMed  Google Scholar 

  • Grady CL, Protzner AB, Kovacevic N, Strother SC, Afshin-Pour B, Wojtowicz M, Anderson JA, Churchill N, McIntosh AR (2010) A multivariate analysis of age-related differences in default mode and task-positive networks across multiple cognitive domains. Cereb Cortex 20(6):1432–1447. doi:10.1093/cercor/bhp207

    PubMed Central  PubMed  Google Scholar 

  • Guenther FH (1994) A neural network model of speech acquisition and motor equivalent speech production. Biol Cybern 72(1):43–53

    CAS  PubMed  Google Scholar 

  • Guenther FH (1995) Speech sound acquisition, coarticulation, and rate effects in a neural network model of speech production. Psychol Rev 102(3):594–621

    CAS  PubMed  Google Scholar 

  • Guenther FH, Ghosh SS, Tourville JA (2006) Neural modeling and imaging of the cortical interactions underlying syllable production. Brain Lang 96(3):280–301. doi:10.1016/j.bandl.2005.06.001

    PubMed Central  PubMed  Google Scholar 

  • Hall DA, Haggard MP, Akeroyd MA, Palmer AR, Summerfield AQ, Elliott MR, Gurney EM, Bowtell RW (1999) “Sparse” temporal sampling in auditory fMRI. Hum Brain Mapp 7(3):213–223

    CAS  PubMed  Google Scholar 

  • Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, Busa E, Pacheco J, Albert M, Killiany R, Maguire P, Rosas D, Makris N, Dale A, Dickerson B, Fischl B (2006) Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage 32(1):180–194. doi:10.1016/j.neuroimage.2006.02.051

    PubMed  Google Scholar 

  • Hayes D (1981) Central auditory problems and the aging process. In: Beasley DS, Davis GA (eds) Aging, communication processes and disorders. Grune & Stratton, New York, pp 257–266

    Google Scholar 

  • Hayes AF (2013) Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. Methodology in the social sciences. The Guilford Press, NY

    Google Scholar 

  • Head D, Rodrigue KM, Kennedy KM, Raz N (2008) Neuroanatomical and cognitive mediators of age-related differences in episodic memory. Neuropsychology 22(4):491–507. doi:10.1037/0894-4105.22.4.491

    PubMed Central  PubMed  Google Scholar 

  • Helfer KS, Vargo M (2009) Speech recognition and temporal processing in middle-aged women. J Am Acad Audiol 20(4):264–271

    PubMed Central  PubMed  Google Scholar 

  • Helfer KS, Wilber LA (1990) Hearing loss, aging, and speech perception in reverberation and noise. J Speech Hear Res 33(1):149–155

    CAS  PubMed  Google Scholar 

  • Humes LE, Lee JH, Coughlin MP (2006) Auditory measures of selective and divided attention in young and older adults using single-talker competition. J Acoust Soc Am 120(5 Pt 1):2926–2937

    PubMed  Google Scholar 

  • Jacobs-Condit LE (1984) Gerontology and communication disorders. American Speech-Language-Hearing Association, Rockville

    Google Scholar 

  • Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson RJ, Oakes TR (2006) Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Hum Brain Mapp 27:779–788

    PubMed  Google Scholar 

  • Kabani N, Le Goualher G, MacDonald D, Evans AC (2001) Measurement of cortical thickness using an automated 3-D algorithm: a validation study. Neuroimage 13(2):375–380. doi:10.1006/nimg.2000.0652

    CAS  PubMed  Google Scholar 

  • Kemeny S, Ye FQ, Birn R, Braun AR (2005) Comparison of continuous overt speech fMRI using BOLD and arterial spin labeling. Hum Brain Mapp 24(3):173–183. doi:10.1002/hbm.20078

    PubMed  Google Scholar 

  • Kuperberg GR, Broome MR, McGuire PK, David AS, Eddy M, Ozawa F, Goff D, West WC, Williams SC, van der Kouwe AJ, Salat DH, Dale AM, Fischl B (2003) Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 60(9):878–888

    PubMed  Google Scholar 

  • Lau HC, Rogers RD, Haggard P, Passingham RE (2004) Attention to intention. Science 303(5661):1208–1210. doi:10.1126/science.1090973

    CAS  PubMed  Google Scholar 

  • Lau H, Rogers RD, Passingham RE (2006) Dissociating response selection and conflict in the medial frontal surface. Neuroimage 29(2):446–451. doi:10.1016/j.neuroimage.2005.07.050

    PubMed  Google Scholar 

  • MacKinnon DP, Fairchild AJ, Fritz MS (2007) Mediation analysis. Annu Rev Psychol 58:593–614. doi:10.1146/annurev.psych.58.110405.085542

    PubMed Central  PubMed  Google Scholar 

  • Martin RE, MacIntosh BJ, Smith RC, Barr AM, Stevens TK, Gati JS, Menon RS (2004) Cerebral areas processing swallowing and tongue movement are overlap** but distinct: a functional magnetic resonance imaging study. J Neurophysiol 92(4):2428–2443. doi:10.1152/jn.0.1144.2003

    PubMed  Google Scholar 

  • Meister IG, Wilson SM, Deblieck C, Wu AD, Iacoboni M (2007) The essential role of premotor cortex in speech perception. Curr Biol 17:1692–1696

    CAS  PubMed  Google Scholar 

  • Meunier D, Stamatakis EA, Tyler LK (2014) Age-related functional reorganization, structural changes, and preserved cognition. Neurobiol Aging 35(1):42–54. doi:10.1016/j.neurobiolaging.2013.07.003

    PubMed  Google Scholar 

  • Nasreddine ZS, Chertkow HP, Phillips N, Bergman H, Whitehead V (2003) Sensitivity and specificity of the Montreal Cognitive Assessment (MoCA) for detection of mild cognitive deficits. Can J Neurol Sci 30(2):30

    Google Scholar 

  • Nelson SM, Dosenbach NU, Cohen AL, Wheeler ME, Schlaggar BL, Petersen SE (2010) Role of the anterior insula in task-level control and focal attention. Brain Struct Funct 214(5–6):669–680. doi:10.1007/s00429-010-0260-2

    PubMed Central  PubMed  Google Scholar 

  • Nichols T, Brett M, Andersson J, Wager T, Poline JB (2005) Valid conjunction inference with the minimum statistic. Neuroimage 25(3):653–660. doi:10.1016/j.neuroimage.2004.12.005

    PubMed  Google Scholar 

  • Nyberg L, Salami A, Andersson M, Eriksson J, Kalpouzos G, Kauppi K, Lind J, Pudas S, Persson J, Nilsson LG (2010) Longitudinal evidence for diminished frontal cortex function in aging. Proc Natl Acad Sci USA 107(52):22682–22686. doi:10.1073/pnas.1012651108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ogar J, Willock S, Baldo J, Wilkins D, Ludy C, Dronkers N (2006) Clinical and anatomical correlates of apraxia of speech. Brain Lang 97(3):343–350. doi:10.1016/j.bandl.2006.01.008

    PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113

    CAS  PubMed  Google Scholar 

  • Peelle JE, Troiani V, Grossman M, Wingfield A (2011) Hearing loss in older adults affects neural systems supporting speech comprehension. J Neurosci Off J Soc Neurosci 31(35):12638–12643. doi:10.1523/JNEUROSCI.2559-11.2011

    CAS  Google Scholar 

  • Peelle JE, Chandrasekaran K, Powers J, Smith EE, Grossman M (2013) Age-related vulnerability in the neural systems supporting semantic processing. Frontiers Aging Neurosci 5:46. doi:10.3389/fnagi.2013.00046

    Google Scholar 

  • Peeva MG, Guenther FH, Tourville JA, Nieto-Castanon A, Anton JL, Nazarian B, Alario FX (2010) Distinct representations of phonemes, syllables, and supra-syllabic sequences in the speech production network. Neuroimage 50(2):626–638. doi:10.1016/j.neuroimage.2009.12.065

    PubMed Central  PubMed  Google Scholar 

  • Petrini K, Pollick FE, Dahl S, McAleer P, McKay LS, Rocchesso D, Waadeland CH, Love S, Avanzini F, Puce A (2011) Action expertise reduces brain activity for audiovisual matching actions: an fMRI study with expert drummers. Neuroimage 56(3):1480–1492. doi:10.1016/j.neuroimage.2011.03.009

    PubMed  Google Scholar 

  • Plath P (1991) Speech recognition in the elderly. Acta Otolaryngol 476(Suppl.):127–130

    Google Scholar 

  • Preacher KJ, Hayes AF (2004) SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav Res Methods Instr Comput J Psychon Soc Inc 36(4):717–731

    Google Scholar 

  • Preacher KJ, Hayes AF (2008a) Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav Res Methods 40(3):879–891

    PubMed  Google Scholar 

  • Preacher KJ, Hayes AF (2008b) Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav Res Methods 40:879–891

    PubMed  Google Scholar 

  • Pulvermüller F, Huss M, Kherif F, del Prado Moscoso, Martin F, Hauk O, Shtyrov Y (2006) Motor cortex maps articulatory features of speech sounds. Proc Natl Acad Sci 103(20):7865–7870

    PubMed Central  PubMed  Google Scholar 

  • Riecker A, Ackermann H, Wildgruber D, Dogil G, Grodd W (2000) Opposite hemispheric lateralization effects during speaking and singing at motor cortex, insula and cerebellum. NeuroReport 11:1997–2000

    CAS  PubMed  Google Scholar 

  • Ries PW (1994) Prevalence and characteristics of persons with hearing trouble: United States, 1990–1991. Vital and health statistics Series 10, Data from the National Health Survey (188):1–75

  • Rosas HD, Liu AK, Hersch S, Glessner M, Ferrante RJ, Salat DH, van der Kouwe A, Jenkins BG, Dale AM, Fischl B (2002) Regional and progressive thinning of the cortical ribbon in Huntington’s disease. Neurology 58(5):695–701

    CAS  PubMed  Google Scholar 

  • Roski C, Caspers S, Lux S, Hoffstaedter F, Bergs R, Amunts K, Eickhoff SB (2013) Activation shift in elderly subjects across functional systems: an fMRI study. Brain Struct Funct. doi:10.1007/s00429-013-0530-x

    PubMed Central  Google Scholar 

  • Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E, Morris JC, Dale AM, Fischl B (2004) Thinning of the cerebral cortex in aging. Cereb Cortex 14(7):721–730

    PubMed  Google Scholar 

  • Salvi RJ, Lockwood AH, Frisina RD, Coad ML, Wack DS, Frisina DR (2002) PET imaging of the normal human auditory system: responses to speech in quiet and in background noise. Hear Res 170(1–2):96–106

    CAS  PubMed  Google Scholar 

  • Sambataro F, Murty VP, Callicott JH, Tan HY, Das S, Weinberger DR, Mattay VS (2010) Age-related alterations in default mode network: impact on working memory performance. Neurobiol Aging 31(5):839–852. doi:10.1016/j.neurobiolaging.2008.05.022

    PubMed Central  PubMed  Google Scholar 

  • Sato M, Tremblay P, Gracco VL (2009) A mediating role of the premotor cortex in phoneme segmentation. Brain Lang 111(1):1–7. doi:10.1016/j.bandl.2009.03.002

    PubMed  Google Scholar 

  • Schwartz J-L, Basirat A, Ménard L, Sato M (2012) The Perception-for-Action-Control Theory (PACT): a perceptuo-motor theory of speech perception. J Neurolinguistics 25(5):336–354. doi:10.1016/j.jneuroling.2009.12.004

    Google Scholar 

  • Scott SK, Rosen S, Wickham L, Wise RJ (2004) A positron emission tomography study of the neural basis of informational and energetic masking effects in speech perception. J Acoust Soc Am 115(2):813–821

    PubMed  Google Scholar 

  • Seydell-Greenwald A, Greenberg AS, Rauschecker JP (2013) Are you listening? Brain activation associated with sustained nonspatial auditory attention in the presence and absence of stimulation. Hum Brain Mapp. doi:10.1002/hbm.22323

  • Sheppard JP, Wang JP, Wong PC (2011) Large-scale cortical functional organization and speech perception across the lifespan. PLoS ONE 6(1):e16510. doi:10.1371/journal.pone.0016510

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shrout PE, Bolger N (2002) Mediation in experimental and nonexperimental studies: new procedures and recommendations. Psychol Methods 7(4):422–445

    PubMed  Google Scholar 

  • Skipper JI, Nusbaum HC, Small SL (2005) Listening to talking faces: motor cortical activation during speech perception. Neuroimage 25(1):76–89. doi:10.1016/j.neuroimage.2004.11.006

    PubMed  Google Scholar 

  • Spaniol J, Grady C (2012) Aging and the neural correlates of source memory: over-recruitment and functional reorganization. Neurobiol Aging 33(2):425, e423–e418. doi:10.1016/j.neurobiolaging.2010.10.005

  • Stach BA (2010) Clinical audiology: an introduction. Delmar, Clifton Park, NY

    Google Scholar 

  • Strouse A, Ashmead DH, Ohde RN, Grantham DW (1998) Temporal processing in the aging auditory system. J Acoust Soc Am 104(4):2385–2399

    CAS  PubMed  Google Scholar 

  • Thambisetty M, Wan J, Carass A, An Y, Prince JL, Resnick SM (2010) Longitudinal changes in cortical thickness associated with normal aging. Neuroimage 52(4):1215–1223. doi:10.1016/j.neuroimage.2010.04.258

    PubMed Central  PubMed  Google Scholar 

  • Tremblay P, Gracco VL (2006) Contribution of the frontal lobe to externally and internally specified verbal responses: fMRI evidence. Neuroimage 33(3):947–957. doi:10.1016/j.neuroimage.2006.07.041

    PubMed  Google Scholar 

  • Tremblay P, Gracco VL (2009) Contribution of the pre-SMA to the production of words and non-speech oral motor gestures, as revealed by repetitive transcranial magnetic stimulation (rTMS). Brain Res 1268:112–124. doi:10.1016/j.brainres.2009.02.076

    CAS  PubMed  Google Scholar 

  • Tremblay P, Small SL (2011a) From language comprehension to action understanding and back again. Cereb Cortex 21(5):1166–1177. doi:10.1093/cercor/bhq189

    PubMed Central  PubMed  Google Scholar 

  • Tremblay P, Small SL (2011b) Motor response selection in overt sentence production: a functional MRI study. Frontiers Psychol 2:253. doi:10.3389/fpsyg.2011.00253

    Google Scholar 

  • Tremblay P, Small SL (2011c) On the context-dependent nature of the contribution of the ventral premotor cortex to speech perception. Neuroimage 57(4):1561–1571. doi:10.1016/j.neuroimage.2011.05.067

    PubMed Central  PubMed  Google Scholar 

  • Tremblay P, Shiller DM, Gracco VL (2008) On the time-course and frequency selectivity of the EEG for different modes of response selection: evidence from speech production and keyboard pressing. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 119(1):88–99

    Google Scholar 

  • Tremblay P, Baroni M, Hasson U (2012) Processing of speech and non-speech sounds in the supratemporal plane: auditory input preference does not predict sensitivity to statistical structure. Neuroimage 66C:318–332. doi:10.1016/j.neuroimage.2012.10.055

    Google Scholar 

  • Tremblay P, Dick AS, Small SL (2013) Functional and structural aging of the speech sensorimotor neural system: functional magnetic resonance imaging evidence. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2013.02.004

    PubMed Central  Google Scholar 

  • Van Oostende S, Van Hecke P, Sunaert S, Nuttin B, Marchal G (1997) FMRI studies of the supplementary motor area and the premotor cortex. Neuroimage 6(3):181–190. doi:10.1006/nimg.1997.0287

    PubMed  Google Scholar 

  • van Velsen EF, Vernooij MW, Vrooman HA, van der Lugt A, Breteler MM, Hofman A, Niessen WJ, Ikram MA (2013) Brain cortical thickness in the general elderly population: the Rotterdam Scan Study. Neurosci Lett 550:189–194. doi:10.1016/j.neulet.2013.06.063

    PubMed  Google Scholar 

  • Walhovd KB, Fjell AM, Dale AM, McEvoy LK, Brewer J, Karow DS, Salmon DP, Fennema-Notestine C (2010) Multi-modal imaging predicts memory performance in normal aging and cognitive decline. Neurobiol Aging 31(7):1107–1121. doi:10.1016/j.neurobiolaging.2008.08.013

    PubMed Central  CAS  PubMed  Google Scholar 

  • Westlye LT, Grydeland H, Walhovd KB, Fjell AM (2011) Associations between regional cortical thickness and attentional networks as measured by the attention network test. Cereb Cortex 21(2):345–356. doi:10.1093/cercor/bhq101

    PubMed  Google Scholar 

  • Wiesmann M, Ishai A (2011) Expertise reduces neural cost but does not modulate repetition suppression. Cognit Neurosci 2(1):57–65. doi:10.1080/17588928.2010.525628

    Google Scholar 

  • Wilson S, Saygin A, Sereno M, Iacoboni M (2004) Listening to speech activates motor areas involved in speech production. Nat Neurosci 7(7):701–702

    CAS  PubMed  Google Scholar 

  • Wong PC, Uppunda AK, Parrish TB, Dhar S (2008) Cortical mechanisms of speech perception in noise. J Speech Lang Hear Res (JSLHR) 51(4):1026–1041. doi:10.1044/1092-4388(2008/075

    Google Scholar 

  • Wong PC, ** JX, Gunasekera GM, Abel R, Lee ER, Dhar S (2009) Aging and cortical mechanisms of speech perception in noise. Neuropsychologia 47(3):693–703. doi:10.1016/j.neuropsychologia.2008.11.032

    PubMed Central  PubMed  Google Scholar 

  • Wong PC, Ettlinger M, Sheppard JP, Gunasekera GM, Dhar S (2010) Neuroanatomical characteristics and speech perception in noise in older adults. Ear Hear 31(4):471–479. doi:10.1097/AUD.0b013e3181d709c2

    PubMed Central  PubMed  Google Scholar 

  • Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, Leirer VO (1982) Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res 17(1):37–49

    PubMed  Google Scholar 

  • Yorkston KM, Bourgeois MS, Baylor CR (2010) Communication and aging. Phys Med Rehabil Clin N Am 21(2):309–319. doi:10.1016/j.pmr.2009.12.011

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the “Institut Universitaire en Santé Mentale de Québec”, Quebec City, and by the “Fonds de la Recherche du Québec Société-Culture” (FRQ-SC). Technical support was provided by the “Consortium d’imagerie en neuroscience et santé mentale de Québec” (CINQ) for protocol development and MRI data acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascale Tremblay.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilodeau-Mercure, M., Lortie, C.L., Sato, M. et al. The neurobiology of speech perception decline in aging. Brain Struct Funct 220, 979–997 (2015). https://doi.org/10.1007/s00429-013-0695-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0695-3

Keywords

Navigation