Log in

Evidence of a rudimentary colon in the elasmobranch, Leucoraja erinacea

  • Short Communication
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The transition from aquatic to terrestrial life presented tetrapodamorphs with the challenge of maintaining water homeostasis and preventing desiccation on land. The colon evolved in terrestrial vertebrates to help maintain fluid balance. Although marine elasmobranchs lack a colon, their spiral intestine contains a subregion that histologically appears to be colon-like, possibly representing an evolutionary precursor to terrestrial digestive tracts. The distal-most region of the spiral intestine of elasmobranchs has no villi and a large number of acid mucins: hallmarks of water absorption in the colons of terrestrial animals. To determine if histologically distinct regions of the elasmobranch digestive tract correspond to functional differences, we compared water absorption in different subregions of the skate, Leucoraja erinacea digestive tract. Water absorption in stomach and spiral intestinal sacs was linear with time and not hydrostatic pressure-dependent. The histologically distinct distal portion of the spiral intestine had a threefold higher rate of water absorption than the proximal portion of the spiral intestine. In addition, the water-selective, colon-specific aquaporin 4 is expressed strongly in the distal spiral intestine epithelia, correlating with the region of the spiral intestine exhibiting the greatest rate of water absorption. We demonstrate that the distal spiral intestine is histologically and functionally distinct from the rest of the spiral intestine and represents a rudimentary colon within the vertebrate lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Abbasi AA (2011) Evolution of vertebrate appendicular structures: insight from genetic and palaeontological data. Dev Dyn 240(5):1005–1016

    Article  PubMed  Google Scholar 

  • Anderson WG, Takei Y, Hazon N (2002) Osmotic and volaemic effects on drinking rate in elasmobranch fish. J Exp Biol 205(Pt 8):1115–1122

    PubMed  Google Scholar 

  • Anderson WG, Dasiewicz PJ, Liban S, Ryan C, Taylor JR, Grosell M, Weihrauch D (2010) Gastro-intestinal handling of water and solutes in three species of elasmobranch fish, the white-spotted bamboo shark, Chiloscyllium plagiosum, little skate, Leucoraja erinacea and the clear nose skate Raja eglanteria. Comp Biochem Physiol A Mol Integr Physiol 155(4):493–502

    Article  PubMed  Google Scholar 

  • Aoki M, Kaneko T, Katoh F, Hasegawa S, Tsutsui N, Aida K (2003) Intestinal water absorption through aquaporin 1 expressed in the apical membrane of mucosal epithelial cells in seawater-adapted Japanese eel. J Exp Biol 206(Pt 19):3495–3505

    Article  PubMed  Google Scholar 

  • Ballantyne JS, Robinson JW (2010) Freshwater elasmobranchs: a review of their physiology and biochemistry. J Comp Physiol B 180(4):475–493

    Article  PubMed  Google Scholar 

  • Ballard W, Mellinger J, Lechenault H (1993) A series of normal stages for development of Scyliorhinus canicula, the lesser spotted dogfish (Chondrichthyes: Scliorhinidae). J Exp Zool 267:318–336

    Article  Google Scholar 

  • Collie N, Bern H (1982) Changes in intestinal fluid transport associated with smoltification and seawater adaptation in coho salmon, Oncorhynchus kisutch. J Fish Biol 21:337–348

    Article  Google Scholar 

  • Corfield AP, Wagner SA, Clamp JR, Kriaris MS, Hoskins LC (1992) Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect Immun 60(10):3971–3978

    PubMed  CAS  Google Scholar 

  • Daeschler EB, Shubin NH, Jenkins FA Jr (2006) A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature 440(7085):757–763

    Article  PubMed  CAS  Google Scholar 

  • De Boeck G, Groswell M, Wood C (2001) Sensitivity of the spinyy dogfish (Squalus acanthias) to waterborne silver exposure. Aquat Toxicol 54:261–275

    Article  PubMed  Google Scholar 

  • Filipe MI (1979) Mucins in the human gastrointestinal epithelium: a review. Invest Cell Pathol 2(3):195–216

    PubMed  CAS  Google Scholar 

  • Forster R, Goldstein L, Rosen J (1972) Intrarenal control of urea reabsorption by renal tubules of the marine elasmobranch, Squalus acanthias. Comp Biochem Physiol A Physiol 42(1):3–12

    Article  CAS  Google Scholar 

  • Hazon N, Henderson IW (1984) Secretory dynamics of 1 alpha-hydroxycorticosterone in the elasmobranch fish, Scyliorhinus canicula. J Endocrinol 103(2):205–211

    Article  PubMed  CAS  Google Scholar 

  • Lacy E (1991) Functional morphology of the large intestine. In: Schultz S (ed) The gastrointestinal system. American Physiological Society, Bethesda

    Google Scholar 

  • Long JA, Gordon MS (2004) The greatest step in vertebrate history: a paleobiological review of the fish-tetrapod transition. Physiol Biochem Zool 77(5):700–719

    Article  PubMed  Google Scholar 

  • Ma T, Verkman AS (1999) Aquaporin water channels in gastrointestinal physiology. J Physiol 517(Pt 2):317–326

    Article  PubMed  CAS  Google Scholar 

  • Naftalin RJ (1994) The dehydrating function of the descending colon in relationship to crypt function. Physiol Res 43(2):65–73

    PubMed  CAS  Google Scholar 

  • Niedzwiedzki G, Szrek P, Narkiewicz K, Narkiewicz M, Ahlberg PE (2010) Tetrapod trackways from the early Middle Devonian period of Poland. Nature 463(7277):43–48

    Article  PubMed  CAS  Google Scholar 

  • Oide M (1967) Effects of inhibitors on transport of water and ion in isolated intestine and Na+−K+ ATPase in intestinal mucosa of the eel. Annot Zool Japan 40:130–135

    CAS  Google Scholar 

  • Oide H, Utida S (1967) Changes in water and ion transport in isolated intestines of the eel during salt adaption and migration. Mar Biol 1:102–106

    Article  Google Scholar 

  • Randall D, Burggren W, French K (1997) Eckert animal physiology: mechanisms and adaptations. Freeman, New York

    Google Scholar 

  • Reifel C, Travill A (1979) Structure and carbohydrate histochemistry of the intestine in ten teleostean species. J Morphol 162(3):343–360

    Article  Google Scholar 

  • Roberts DJ, Smith DM, Goff DJ, Tabin CJ (1998) Epithelial-mesenchymal signaling during the regionalization of the chick gut. Development 125(15):2791–2801

    PubMed  CAS  Google Scholar 

  • Singh SK, Binder HJ, Boron WF, Geibel JP (1995) Fluid absorption in isolated perfused colonic crypts. J Clin Invest 96(5):2373–2379. doi:10.1172/JCI118294

    Article  PubMed  CAS  Google Scholar 

  • Smith H (1931) The absorption and secretion of water and salts by the elasmobranch fishes. II. Marine elasmobranchs. Am J Physiol 98:296–310

    CAS  Google Scholar 

  • Theodosiou NA, Hall DA, Jowdry AL (2007) Comparison of acid mucin goblet cell distribution and Hox13 expression patterns in the develo** vertebrate digestive tract. J Exp Zool B Mol Dev Evol 308(4):442–453

    Article  PubMed  Google Scholar 

  • Wang KS, Ma T, Filiz F, Verkman AS, Bastidas JA (2000) Colon water transport in transgenic mice lacking aquaporin-4 water channels. Am J Physiol Gastrointest Liver Physiol 279(2):G463–G470

    PubMed  CAS  Google Scholar 

  • Warot X, Fromental-Ramain C, Fraulob V, Chambon P, Dolle P (1997) Gene dosage-dependent effects of the Hoxa13 and Hoxd13 mutations on morphogenesis of the terminal parts of the digestive and urogential tracts. Development 124:4781–4791

    PubMed  CAS  Google Scholar 

  • Welsh MJ, Smith PL, Fromm M, Frizzell RA (1982) Crypts are the site of intestinal fluid and electrolyte secretion. Science 218(4578):1219–1221

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank D. Evans for manuscript comments and the MDIBL animal core (Salisbury Cove, ME) for L. erinacea animals. NAT received support from a MDIBL New Investigator Award and the Skidmore-Union Network, a project established with a NSF ADVANCE PAID grant. Support for undergraduate research came from the REU Site at MDIBL (NSF DBI-0453391), a Sciortino Cancer Research Fellowship, and a Union College Summer Fellowship Award to A.S. MDIBL is supported by Award Number P20RR016463 from the National Center for Research Resources. The content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of the National Center for Research Resources or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Alexandra Theodosiou.

Additional information

Communicated by V. Hartenstein

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theodosiou, N.A., Simeone, A. Evidence of a rudimentary colon in the elasmobranch, Leucoraja erinacea . Dev Genes Evol 222, 237–243 (2012). https://doi.org/10.1007/s00427-012-0406-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-012-0406-8

Keywords

Navigation