Log in

Spatiotemporal expression of duplicate AGAMOUS orthologues during floral development in Phalaenopsis

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The AGAMOUS (AG) family of MADS-box genes plays important roles in controlling the development of the reproductive organs of flowering plants. To understand the molecular mechanisms behind the floral development in the orchid, we isolated and characterized two AG-like genes from Phalaenopsis that we denoted PhalAG1 and PhalAG2. Phylogenetic analysis indicated that PhalAG1 and PhalAG2 fall into different phylogenetic positions in the AG gene family as they belong to the C- and D-lineages, respectively. Reverse transcription-polymerase chair reaction (RT-PCR) analyses showed that PhalAG1 and PhalAG2 transcripts were detected in flower buds but not in vegetative organs. Moreover, in situ hybridization experiments revealed that PhalAG1 and PhalAG2 hybridization signals were observed in the lip, column, and ovule during the floral development of Phalaenopsis, with little difference between the expression patterns of the two genes. These results suggest that both AG-like genes in Phalaenopsis act redundantly with each other in floral development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aharoni A, van Tunen AJ, Rosin FM, Hannapel DJ (1999) Isolation of AGAMOUS cDNA (STAG1) from Strawberry (Fragaria x ananassa cv. Elsanta). Plant Physiol 121:685–686

    Google Scholar 

  • Ainsworth C, Crossley S, Buchanan-Wollaston V, Thangavelu M, Parker J (1995) Male and female flowers of the dioecious plant sorrel show different patterns of MADS box gene expression. Plant Cell 7:1583–1598

    Google Scholar 

  • Angenent GC, Colombo L (1996) Molecular control of ovule development. Trends Plant Sci 1:228–232

    Google Scholar 

  • Angenent GC, Franken J, Busscher M, van Dijken A, van Went JL, Dons HJM, van Tunen AJ (1995) A novel class of MADS box genes is involved in ovule development in Petunia. Plant Cell 7:1569–1582

    Google Scholar 

  • Belarmino MM, Mii M (2000) Agrobacterium-mediated genetic transformation of a Phalaenopsis orchid. Plant Cell Rep 19:435–442

    Google Scholar 

  • Benedito VA, Visser PB, van Tuy JM, Angenent GC, de Vries SC, Krens FA (2004) Ectopic expression of LLAG1, an AGAMOUS homologue from lily (Lilium longiflorum Thunb.) causes floral homeotic modifications in Arabidopsis. J Exp Bot 55:1391–1399

    Google Scholar 

  • Boss PK, Vivier M, Matsumoto S, Dry IB, Thomas MR (2001) A cDNA from grapevine (Vitis vinifera L.), which shows homology to AGAMOUS and SHATTERPROOF, is not only expressed in flowers but also throughout berry development. Plant Mol Biol 45:541–553

    Google Scholar 

  • Boss PK, Sensi E, Hua C, Davies C, Thomas MR (2002) Cloning and characterization of grapevine (Vitis vinifera L.) MADS-box genes expressed during inflorescence and berry development. Plant Sci 162:887–895

    Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1989) Gene directing flower development in Arabidopsis. Plant Cell 1:37–52

    Google Scholar 

  • Bradley D, Carpenter R, Sommer H, Hartley N, Coen E (1993) Complementary floral homeotic phenotypes result from opposite orientations of transposon at the plena locus of Antirrhinum. Cell 72:85–95

    Google Scholar 

  • Brunner AM, Rottmann WH, Sheppard LA, Krutovskii K, DiFazio SP, Leonardi S, Strauss SH (2000) Structure and expression of duplicate AGAMOUS orthologues in poplar. Plant Mol Biol 44:619–634

    Google Scholar 

  • Busi MV, Bustamante C, D’Angelo C, Hidalgo-Cuevas M, Boggio SB, Valle EM, Zabaleta E (2003) MADS-box genes expressed during tomato seed and fruit development. Plant Mol Biol 52:801–815

    Google Scholar 

  • Cameron KM, Chase MW, Whitten WM, Kores PJ, Jarrell DC, Albert VC, Yukawa T, Hills HG, Goldman DH (1999) A phylogenetic analysis of the orchidaceae: evidence from RBCL nucleotide sequences. Am J Bot 86:208–224

    Google Scholar 

  • Carpenter R, Coen ES (1990) Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes Dev 4:1483–1493

    Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Google Scholar 

  • Colombo L, Franken J, Koetje E, Van Went J, Dons HJM, Angenent GC, van Tunen AJ (1995) The Petunia MADS-box gene FBP11 determines ovule identity. Plant Cell 7:1859–1868

    Google Scholar 

  • Colombo L, Franken J, Van del Krol AR, Wittich PE, Dons HJM, Angenent GC (1997) Downregulation of ovule-specific MADS box genes from Petunia results in maternally controlled defects in seed development. Plant Cell 9:703–715

    Google Scholar 

  • Cozzoline S, Widmer A (2005) Orchid diversity: an evolutionary consequence of deception? Trends Ecol Evol 20:487–494

    Google Scholar 

  • Davies B, Schwarz-Sommer Z (1994) Control of floral organ identity by homeotic MADS box transcription factors. In: Nover L (ed) Results and problems in cell differentiation. Springer, Berlin Heidelberg New York, pp 235–258

    Google Scholar 

  • Davies B, Motte P, Keck E, Saedler H, Sommer H, Schwarz-Sommer Z (1999) PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. EMBO J 18:4023–4034

    Google Scholar 

  • Endress PK (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge

    Google Scholar 

  • Favaro R, Immink RGH, Ferioli V, Bernasconi B, Byzova M, Angenent GC, Kater M, Colombo L (2002) Ovule-specific MADS-box proteins have conserved protein–protein interactions in monocot and dicot plants. Mol Genet Genomics 268:152–159

    Google Scholar 

  • Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, Colombo L (2003) MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15:2603–2611

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenetics: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer Associates. Sunderland, Massachussetts

    Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan Y-L, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    Google Scholar 

  • Frohman MA, Dush MK, Martin GR (1988) Rapid production of full-length cDNA from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A 85:8998–9002

    Google Scholar 

  • Galant R, Carroll SB (2002) Evolution of a transcriptional repression domain in an insect HOX protein. Nature 415:910–913

    Google Scholar 

  • Gustafson-Brown C, Savidge B, Yanofsky MF (1994) Regulation of the Arabidopsis homeotic gene APETALA1. Cell 76:131–143

    Google Scholar 

  • Hardenack S, Ye D, Saedler H, Grant S (1994) Comparison of MADS-box gene expression in develo** male and female flowers of the dioecious plant white campion. Plant Cell 6:1775–1787

    Google Scholar 

  • Hughes AL (1999) Adaptive evolution of genes and genomes. Oxford University Press, Oxford

    Google Scholar 

  • Jack T, Sieburth L, Meyerowitz E (1997) Targeted misexpression of AGAMOUS in whorl 2 of Arabidopsis flowers. Plant J 11:825–839

    Google Scholar 

  • Jager M, Hassanin A, Manuel M, Le Guyader H, Deutsch J (2003) MADS-box genes in Ginkgo biloba and the evolution of the AGAMOUS family. Mol Biol Evol 20:842–854

    Google Scholar 

  • Kang HG, Noh YS, Chung YY, Costa MA, An K, An G (1995) Phenotypic alterations of petal and sepal by ectopic expression of a rice MADS box gene in tobacco. Plant Mol Biol 29:1–10

    Google Scholar 

  • Kang HG, Jeon JS, Lee S, An G (1998) Identification of class B and class C floral organ identity genes from rice plants. Plant Mol Biol 38:1021–1029

    Google Scholar 

  • Kempin SA, Mandel MA, Yanofsky MF (1993) Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene NAGI. Plant Physiol 103:1041–1046

    Google Scholar 

  • Kitahara K, Matsumoto S (2000) Rose MADS-box genes ‘MASAKO C1 and D1’ homologous to class C floral identity genes. Plant Sci 151:121–134

    Google Scholar 

  • Kramer EM, Alejandra-Jaramillo M, Di Stilio VS (2004) Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics 166:1011–1023

    Google Scholar 

  • Lamb RS, Irish VF (2003) Functional divergence within the APETALA3 / PISTILLATA floral homeotic gene lineages. Proc Natl Acad Sci U S A 100:6558–6563

    Google Scholar 

  • Lemmetyinen J, Hassinen M, Elo A, Porali I, Keinonen K, Makela H, Sopanen T (2004) Functional characterization of SEPALLATA 3 and AGAMOUS orthologues in silver birch. Physiol Plant 121:149–162

    Google Scholar 

  • Levine M (2002) How insects lose their limbs. Nature 415:848–849

    Google Scholar 

  • Li QZ, Li XG, Bai SN, Lu WL, Zhang XS (2002) Isolation of HAG1 and its regulation by plant hormones during in vitro floral organogenesis in Hyacinthus orientalis L. Planta 215:533–540

    Google Scholar 

  • Liu J, Huang Y, Ding B, Tauer CG (1999) cDNA cloning and expression of a sweetgum gene that shows homology with Arabidopsis AGAMOUS. Plant Sci 142:73–82

    Google Scholar 

  • Lopez-Dee ZP, Wittich P, Enrico Pe M, Rigola D, Del Buono I, Gorla MS, Kater MM, Colombo L (1999) OsMADS13, a novel rice MADS-box gene expressed during ovule development. Dev Genet 25:237–244

    Google Scholar 

  • Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459–473

    Google Scholar 

  • Ma H, Yanofsky MF, Meyerowitz EM (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev 5:484–495

    Google Scholar 

  • Mena M, Ambrose BA, Meeley RB, Briggs SP, Yanofsky MF, Schmidt RJ (1996) Diversification of C-function activity in maize flower development. Science 274:1537–1540

    Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Google Scholar 

  • Münster T, Pahnke J, Di Rosa A, Kim JT, Martin W, Saedler H, Theissen G (1997) Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc Natl Acad Sci U S A 94:2415–2420

    Google Scholar 

  • Münster T, Deleu W, Wingen LU, Ouzunova M, Cacharron J, Faigl W, Werth S, Kim JTT, Saedler H, Theissen G (2002) Maize MADS-box genes galore. Maydica 47:287–301

    Google Scholar 

  • Nakamura T, Song IJ, Fukuda T, Yokoyama J, Maki M, Ochiai T, Kameya T, Kanno A (2005) Characterization of TrcMADS1 gene of Trillium camtschatcense (Trilliaceae) reveals functional evolution of the SOC1/TM3-like gene family. J Plant Res 118:229–234

    Google Scholar 

  • Nurrish SJ, Treisman R (1995) DNA binding specificity determinants in MADS-box transcriptional factors. Mol Cell Biol 15:4076–4085

    Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

    Google Scholar 

  • Perrière G, Gouy M (1996) WWW-Query: an on-line retrieval system for biological sequence banks. Biochemie 78:364–369

    Google Scholar 

  • Perl-Treves R, Kahana A, Rosenman N, **ang Y, Silberstein L (1998) Expression of multiple AGAMOUS-like genes in male and female flowers of cucumber (Cucumis sativus L.). Plant Cell Physiol 39:701:710

    Google Scholar 

  • Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85–88

    Google Scholar 

  • Pnueli L, Hareven D, Rounsley SD, Yanofsky MF, Lifschitz E (1994) Isolation of tomato AGAMOUS gene TAGI and analysis of its role in transgenic plants. Plant Cell 6:163–173

    Google Scholar 

  • Rasmussen FN (1985) Orchids. In: Dahlgren RMT, Clifford PF, Yeo PF (eds) The families of the monocotyledons. Springer, Berlin Heidelberg New York, pp 249–274

    Google Scholar 

  • Rigola D, Pe ME, Fabrizio C, Me G, Sari-Gorla M (1998) CaMADS1, a MADS box gene expressed in the carpel of hazelnut. Plant Mol Biol 38:1147–1160

    Google Scholar 

  • Ronshaugen M, McGinnis N, McGinnis W (2002) Hox protein mutation and macroevolution of the insect body plan. Nature 415:914–917

    Google Scholar 

  • Rounsley SD, Ditta GS, Yanofsky MF (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7:1259–1269

    Google Scholar 

  • Rutledge R, Regan S, Nicolas O, Fobert P, Côté C, Bosnich W, Kauffeldt C, Sunohara G, Séguin A, Stewart D (1998) Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. Plant J 15:625–634

    Google Scholar 

  • Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, Wu J, Niimura Y, Cheng Z, Nagamura Y, Antonio BA, Kanamori H, Hosokawa S, Masukawa M, Arikawa K, Chiden Y, Hayashi M, Okamoto M, Ando T, Aoki H, Arita K, Hamada M, Harada C, Hijishita S, Honda M, Ichikawa Y, Idonuma A, Iijima M, Ikeda M, Ikeno M, Ito S, Ito T, Ito Y, Ito Y, Iwabuchi A, Kamiya K, Karasawa W, Katagiri S, Kikuta A, Kobayashi N, Kono I, Machita K, Maehara T, Mizuno H, Mizubayashi T, Mukai Y, Nagasaki H, Nakashima M, Nakama Y, Nakamichi Y, Nakamura M, Namiki N, Negishi M, Ohta I, Ono N, Saji S, Sakai K, Shibata M, Shimokawa T, Shomura A, Song J, Takazaki Y, Terasawa K, Tsuji K, Waki K, Yamagata H, Yamane H, Yoshiki S, Yoshihara R, Yukawa K, Zhong H, Iwama H, Endo T, Ito H, Hahn JH, Kim HI, Eun MY, Yano M, Jiang J, Gojobori T (2002) The genome sequence and structure of rice chromosome 1. Nature 420:312–316

    Google Scholar 

  • Schmidt RJ, Veit B, Mandel MA, Mena M, Hake S, Yanofsky MF (1993) Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. Plant Cell 5:729–737

    Google Scholar 

  • Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250:931–936

    Google Scholar 

  • Shore P, Sharrocks AD (1995) The MADS-box family of transcription factors. Eur J Biochem 229:1–13

    Google Scholar 

  • Tandre K, Albert VA, Sundas A, Engstrom P (1995) Conifer homologues to genes that control floral development in angiosperms. Plant Mol Biol 27:69–78

    Google Scholar 

  • Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Google Scholar 

  • Theissen G, Saedler H (2001) Floral quartets. Nature 409:469–471

    Google Scholar 

  • Theissen G, Strater T, Fischer A, Saedler H (1995) Structural characterization, chromosomal localization and phylogenetic evaluation of two pairs of AGAMOUS-like MADS-box genes from maize. Genec156:155–166

    Google Scholar 

  • Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter K-U, Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115–149

    Google Scholar 

  • Theissen G, Becker A, Winter K-U, Münster T, Kirchner C, Saedler H (2002) How the land plants learned their floral ABCs: the role of MADS-box genes in the evolutionary origin of flowers. In: Cronk QCB, Bateman RM, Hawkins JA (eds) Developmental genetics and plant evolution. Taylor & Francis, London, pp 173–205

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Google Scholar 

  • Tsai WC, Kuoh CS, Chuang MH, Chen WH, Chen HH (2004) Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol 45:831–844

    Google Scholar 

  • Tsai WC, Lee PF, Chen HI, Hsiao YY, Wei WJ, Pan ZJ, Chuang MH, Kuoh CS, Chen WH, Chen HH (2005) PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol 46:1125–1139

    Google Scholar 

  • Tsuchimoto S, van der Krol AR, Chua NH (1993) Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant. Plant Cell 5:843–853

    Google Scholar 

  • Tzeng TY, Chen HY, Yang CH (2002) Ectopic expression of carpel-specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis. Plant Physiol 130:1827–1836

    Google Scholar 

  • Vandenbussche M, Theissen G, Van de Peer Y, Gerats T (2003) Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucleic Acid Res 31:4401–4409

    Google Scholar 

  • Wagner A (1999) Redundant gene functions and natural selection. J Evol Biol 12:1–16

    Google Scholar 

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209

    Google Scholar 

  • Winter K-U, Becker A, Münster T, Kim JT, Saedler H, Theissen G (1999) MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proc Natl Acad Sci U S A 96:7342–7347

    Google Scholar 

  • Xu HY, Li XG, Li QZ, Bai SN, Lu WL, Zhang XS (2004) Characterization of HoMADS1 and its induction by plant hormones during in vitro ovule development in Hyacinthus orientalis L. Plant Mol Biol 55:209–220

    Google Scholar 

  • Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35–39

    Google Scholar 

  • Yu D, Kotilainen M, Pollanen E, Mehto M, Elomaa P, Helariutta Y, Albert VA, Teeri TH (1999) Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant J 17:51–62

    Google Scholar 

  • Yun P-Y, Ito T, Kim S-Y, Kanno A, Kameya T (2004a) AVAG1 gene is involved in the development of reproductive organs in ornamental asparagus, Asparagus virgatus. Sex Plant Reprod 17:1–8

    Google Scholar 

  • Yun P-Y, Kim S-Y, Ochiai T, Fukuda T, Ito T, Kanno A, Kameya T (2004b) AVAG2 is a putative D-class gene from an ornamental asparagus. Sex Plant Reprod 17:107–116

    Google Scholar 

Download references

Acknowledgements

We deeply thank Professor H. Takahashi and S. Saito for technical assistance and also H. Tokairin for his collaboration in culturing the plants. We are also grateful to professor H. -Y. Lee, J. -H. Park, S. -S. Lee, Y. Ishikawa, T. Ochiai, P. -Y. Yun, B. -J. Park, Y. Mashiko, H. Ashizawa, A. Sato, M. Nakada, N. Kuroiwa, T. Shishido, R. Shinohara, M. Komatsu, Y. Akita, S. -Y. Kim, M. Hirai, T. Kamimura and H. Nakayama for providing much help and advice. This study was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kanno.

Additional information

Communicated by G. Jürgens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, IJ., Nakamura, T., Fukuda, T. et al. Spatiotemporal expression of duplicate AGAMOUS orthologues during floral development in Phalaenopsis . Dev Genes Evol 216, 301–313 (2006). https://doi.org/10.1007/s00427-005-0057-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-005-0057-0

Keywords

Navigation