Log in

Analysis of codon usage bias of chloroplast genes in Oryza species

Codon usage of chloroplast genes in Oryza species

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The codon usage bias in chloroplast genes of Oryza species was low and AT rich. The pattern of codon usage was different among Oryza species and mainly influenced by mutation pressure and natural selection.

Abstract

Codon usage bias (CUB) is the unequal usage of synonymous codons in which some codons are more preferred to others in the coding sequences of genes. It shows a species-specific property. We studied the patterns of codon usage and the factors that influenced the CUB of protein-coding chloroplast (cp) genes in 18 Oryza species as no work was yet reported. The nucleotide composition analysis revealed that the overall GC content of cp genes in different species of Oryza was lower than 50%, i.e., Oryza cp genes were AT rich. Synonymous codon usage order (SCUO) suggested that CUB was weak in the cp genes of different Oryza species. A highly significant correlation was observed between overall nucleotides and its constituents at the third codon position suggesting that both, mutation pressure and natural selection, might influence the CUB. Correspondence analysis (COA) revealed that codon usage pattern differed across Oryza species. In the neutrality plot, a narrow range of GC3 distribution was recorded and some points were diagonally distributed in all the plots, suggesting that natural selection and mutation pressure might have influenced the CUB. The slope of the regression line was < 0.5, augmenting our inference that natural selection might have played a major role, while mutation pressure had a minor role in sha** the CUB of cp genes. The magnitudes of mutation pressure and natural selection on cp genes varied across Oryza species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

COA:

Correspondence analysis

cp:

Chloroplast

CUB:

Codon usage bias

MILC:

Measure independent of length and composition

PR2:

Parity rule 2

RSCU:

Relative synonymous codon usage

SCUO:

Synonymous codon usage order

References

  • Angellotti MC, Bhuiyan SB, Chen G, Wan X-F (2007) CodonO: codon usage bias analysis within and across genomes. Nucleic Acids Res 35(Suppl_2):W132–W136

    PubMed  PubMed Central  Google Scholar 

  • Baker A, Leaver CJ (1985) Isolation and sequence analysis of a cDNA encoding the ATP/ADP translocator of Zea mays L. Nucleic Acids Res 13(16):5857–5867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya D, Uddin A, Das S, Chakraborty S (2019) Mutation pressure and natural selection on codon usage in chloroplast genes of two species in Pisum L. (Fabaceae: Faboideae). Mitochondrial DNA Part A 30(4):664–673

    CAS  Google Scholar 

  • Brugler MR, France SC (2008) The mitochondrial genome of a deep-sea bamboo coral (Cnidaria, Anthozoa, Octocorallia, Isididae): genome structure and putative origins of replication are not conserved among octocorals. J Mol Evol 67(2):125

    CAS  PubMed  Google Scholar 

  • Bungard RA (2004) Photosynthetic evolution in parasitic plants: insight from the chloroplast genome. BioEssays 26(3):235–247

    CAS  PubMed  Google Scholar 

  • Butt AM, Nasrullah I, Qamar R, Tong Y (2016) Evolution of codon usage in Zika virus genomes is host and vector specific. Emerg Microbes Infec 5(1):1–14

    Google Scholar 

  • Butt AM, Nasrullah I, Tong Y (2014) Genome-wide analysis of codon usage and influencing factors in chikungunya viruses. PLoS ONE 9(3):e90905

    PubMed  PubMed Central  Google Scholar 

  • Chrispeels MJ, Sadava DE (2003) Plants, genes, and crop biotechnology. Jones & Bartlett Publishers, Massachusetts

    Google Scholar 

  • Das S, Paul S, Dutta C (2006) Synonymous codon usage in adenoviruses: influence of mutation, selection and protein hydropathy. Virus Res 117(2):227–236

    CAS  PubMed  Google Scholar 

  • Das S, Uddin A, Bhattacharyya D, Chakraborty S (2018) Transcript free energy positively correlates with codon usage bias in mitochondrial genes of Calypogeia species (Calypogeiaceae, Marchantiophyta). Mitochondrial DNA Part A. doi: 10.1080/24701394.2018.1472772

  • Dos Reis M, Wernisch L, Savva R (2003) Unexpected correlations between gene expression and codon usage bias from microarray data for the whole Escherichia coli K-12 genome. Nucleic Acids Res 31(23):6976–6985

    PubMed  PubMed Central  Google Scholar 

  • Edelman GM, Gally JA (2001) Degeneracy and complexity in biological systems. Proc Natl Acad Sci USA 98(24):13763–13768

    CAS  PubMed  Google Scholar 

  • Frank A, Lobry J (1999) Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. Gene 238(1):65–77

    CAS  PubMed  Google Scholar 

  • Galtier N, Lobry J (1997) Relationships between genomic G+ C content, RNA secondary structures, and optimal growth temperature in prokaryotes. J Mol Evol 44(6):632–636

    CAS  PubMed  Google Scholar 

  • Garcia-Vallvé S, Romeu A, Palau J (2000) Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Res 10(11):1719–1725

    PubMed  PubMed Central  Google Scholar 

  • Gouy M, Gautier C (1982) Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res 10(22):7055–7074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grantham R, Perrin P, Mouchiroud D (1986) Patterns in codon usage of different kinds of species. Oxford Surv Evol Biol 3:48–81

    Google Scholar 

  • Hatfield GW, Roth DA (2007) Optimizing scaleup yield for protein production: computationally optimized DNA assembly (CODA) and translation engineering™. Biotechnol Annu Rev 13:27–42

    CAS  PubMed  Google Scholar 

  • He B, Dong H, Jiang C, Cao F, Tao S, Xu L-a (2016) Analysis of codon usage patterns in Ginkgo biloba reveals codon usage tendency from A/U-ending to G/C-ending. Sci Rep 6:35927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ et al (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406(6795):477–483

    CAS  PubMed  Google Scholar 

  • Hershberg R, Petrov DA (2008) Selection on codon bias. Annu Rev Genetics 42:287–299

    CAS  Google Scholar 

  • Howe N, Strauss W (2003) Millennials go to college: Strategies for a new generation on campus: recruiting and admissions, campus life, and the classroom. American Association of Collegiate Registrars and Admissions Officers, Washington

    Google Scholar 

  • Hsiao Y-Y, Lin C-H, Liu J-K, Wong T-Y, Kuo J (2010) Analysis of codon usage patterns in toxic dinoflagellate Alexandrium tamarense through expressed sequence tag data. Comp Funct Genomics 2010:138538. https://doi.org/10.1155/2010/138538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James FC, McCulloch CE (1990) Multivariate analysis in ecology and systematics: panacea or Pandora’s box? Annu Rev Ecol Syst 21(1):129–166

    Google Scholar 

  • Jensen PE, Leister D (2014) Chloroplast evolution, structure and functions. F1000prime Reports 6:40. https://doi.org/10.12703/P6-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia J, Xue Q (2009) Codon usage biases of transposable elements and host nuclear genes in Arabidopsis thaliana and Oryza sativa. Genomics Proteomics Bioinf 7(4):175–184

    CAS  Google Scholar 

  • Jia X, Liu S, Zheng H, Li B, Qi Q, Wei L, Zhao T, He J, Sun J (2015) Non-uniqueness of factors constraint on the codon usage in Bombyx mori. BMC Genomics 16(1):356

    PubMed  PubMed Central  Google Scholar 

  • Kawabe A, Miyashita NT (2003) Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genetic Syst 78(5):343–352

    CAS  Google Scholar 

  • Kelley PM, Tolan DR (1986) The complete amino acid sequence for the anaerobically induced aldolase from maize derived from cDNA clones. Plant Physiol 82(4):1076–1080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kleine T, Maier UG, Leister D (2009) DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. Annu Rev Plant Biol 60:115–138

    CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinf 5(2):150–163

    CAS  Google Scholar 

  • Leffler EM, Bullaughey K, Matute DR, Meyer WK, Segurel L, Venkat A, Andolfatto P, Przeworski M (2012) Revisiting an old riddle: what determines genetic diversity levels within species? PLoS Biol 10(9):e1001388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11(12):2453–2465

    CAS  PubMed  Google Scholar 

  • Liu H, He R, Zhang H, Huang Y, Tian M, Zhang J (2010) Analysis of synonymous codon usage in Zea mays. Mol Biol Rep 37(2):677

    CAS  PubMed  Google Scholar 

  • Liu Q, Xue Q (2005) Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species. J Genetics 84(1):55–62

    CAS  Google Scholar 

  • Maclean J (ed) (2013) GRiSP Rice Almanac: source book for one of the most important economic activities on earth, vol 4. IRRI, Los Banos, Philippines

    Google Scholar 

  • Murray EE, Lotzer J, Eberle M (1989) Codon usage in plant genes. Nucleic Acids Res 17(2):477–498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nie X, Deng P, Feng K, Liu P, Du X, You FM, Weining S (2014) Comparative analysis of codon usage patterns in chloroplast genomes of the Asteraceae family. Plant Mol Biol Rep 32(4):828–840

    CAS  Google Scholar 

  • Paul P, Malakar AK, Chakraborty S (2018) Codon usage and amino acid usage influence genes expression level. Genetica 146(1):53–63

    CAS  PubMed  Google Scholar 

  • Prat S, Cortadas J, Puigdomènech P, Palau J (1985) Nucleic acid (cDNA) and amino acid sequences of the maize endosperm protein glutelin-2. Nucleic Acids Res 13(5):1493–1504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sablok G, Nayak KC, Vazquez F, Tatarinova TV (2011) Synonymous codon usage, GC3, and evolutionary patterns across plastomes of three pooid model species: emerging grass genome models for monocots. Mol Biotechnol 49(2):116–128

    CAS  PubMed  Google Scholar 

  • Sanchez PL, Wing RA, Brar DS (2013) The wild relative of rice: genomes and genomics. In: Zhang Q, Wing RA (eds) Genetics and genomics of rice. Springer, New York, pp 9–25

    Google Scholar 

  • Sharp PM, Bailes E, Grocock RJ, Peden JF, Sockett RE (2005) Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Res 33(4):1141–1153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp PM, Emery LR, Zeng K (2010) Forces that influence the evolution of codon bias. Philos T R Soc B 365(1544):1203–1212

    CAS  Google Scholar 

  • Sharp PM, Li W-H (1986) An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol 24(1–2):28–38

    CAS  PubMed  Google Scholar 

  • Sharp PM, Li W-H (1987) The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15(3):1281–1295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shields DC, Sharp PM, Higgins DG, Wright F (1988) “Silent” sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. Mol Biol Evol 5(6):704–716

    CAS  PubMed  Google Scholar 

  • Sueoka N (1995) Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. JMol Evol 40(3):318–325

    CAS  Google Scholar 

  • Sueoka N (1999) Two aspects of DNA base composition: G+ C content and translation-coupled deviation from intra-strand rule of A= T and G= C. J Mol Evol 49(1):49–62

    CAS  PubMed  Google Scholar 

  • Supek F, Vlahoviček K (2005) Comparison of codon usage measures and their applicability in prediction of microbial gene expressivity. BMC Bioinf 6(1):182

    Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10(3):512–526

    CAS  Google Scholar 

  • Tamura M, Tao R, Sugiura A (1992) Highly stable regeneration from long-term cultures of Japanese persimmon callus. Hort Sci 27(9):1048–1048

    Google Scholar 

  • Tatarinova TV, Alexandrov NN, Bouck JB, Feldmann KA (2010) GC 3 biology in corn, rice, sorghum and other grasses. BMC Genomics 11(1):308

    PubMed  PubMed Central  Google Scholar 

  • Tuller T, Carmi A, Vestsigian K, Navon S, Dorfan Y, Zaborske J, Pan T, Dahan O, Furman I, Pilpel Y (2010) An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 141(2):344–354

    CAS  PubMed  Google Scholar 

  • Vaughan DA (1994) The wild relatives of rice: a genetic resources handbook. IRRI, Los Banos

    Google Scholar 

  • Wan X-F, Xu D, Kleinhofs A, Zhou J (2004) Quantitative relationship between synonymous codon usage bias and GC composition across unicellular genomes. BMC Evol Biol 4(1):19

    PubMed  PubMed Central  Google Scholar 

  • Wan X, Xu D, Zhou J (2003) A new informatics method for measuring synonymous codon usage bias. In: Dagli CH, et al. (eds) Intelligent engineering systems through artificial neural networks, vol 13. ASME Press., New York, pp 1101–1018

    Google Scholar 

  • Wang B, Yuan J, Liu J, ** L, Chen JQ (2011) Codon usage bias and determining forces in green plant mitochondrial genomes. J Integr Plant Biol 53(4):324–334

    CAS  PubMed  Google Scholar 

  • Wei L, He J, Jia X, Qi Q, Liang Z, Zheng H, ** Y, Liu S, Sun J (2014) Analysis of codon usage bias of mitochondrial genome in Bombyx mori and its relation to evolution. BMC Evol Biol 14(1):262

    PubMed  PubMed Central  Google Scholar 

  • Williams E, Place A, Bachvaroff T (2017) Transcriptome analysis of core dinoflagellates reveals a universal bias towards “GC” rich codons. Marine Drugs 15(5):125

    PubMed Central  Google Scholar 

  • Williams KC, Page RA, Petrosky AR (2014) Green sustainability and new social media. J Strategic Innov Sustain 9:11–33

    Google Scholar 

  • Wright F, Bibb MJ (1992) Codon usage in the G+ C-rich Streptomyces genome. Gene 113:55–65

    CAS  PubMed  Google Scholar 

  • Yadav MK, Swati D (2012) Comparative genome analysis of six malarial parasites using codon usage bias based tools. Bioinformation 8(24):1230–1239

    PubMed  PubMed Central  Google Scholar 

  • Zhang L, Yong G, Ling L, Yue-** W, Zhi-Min D, Shou-Hong S, Li-Juan Q (2011) Analysis of nuclear gene codon bias on soybean genome and transcriptome. Acta Agron Sinica 37(6):965–974

    CAS  Google Scholar 

  • Zhang WJ, Zhou J, Li ZF, Wang L, Gu X, Zhong Y (2007) Comparative analysis of codon usage patterns among mitochondrion, chloroplast and nuclear genes in Triticum aestivum L. J Integr Plant Biol 49(2):246–254

    CAS  Google Scholar 

  • Zhang Y, Nie X, Jia X, Zhao C, Biradar SS, Wang L, Du X, Weining S (2012) Analysis of codon usage patterns of the chloroplast genomes in the Poaceae family. Austr J Bot 60(5):461–470

    CAS  Google Scholar 

  • Zhang Z, Dai W, Dai D (2013a) Synonymous codon usage in TTSuV2: analysis and comparison with TTSuV1. PLoS ONE 8(11):e81469

    PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Dai W, Wang Y, Lu C, Fan H (2013b) Analysis of synonymous codon usage patterns in torque teno sus virus 1 (TTSuV1). Arch Virol 158(1):145–154

    CAS  PubMed  Google Scholar 

  • Zhao Y, Zheng H, Xu A, Yan D, Jiang Z, Qi Q, Sun J (2016) Analysis of codon usage bias of envelope glycoprotein genes in nuclear polyhedrosis virus (NPV) and its relation to evolution. BMC Genomics 17(1):677

    PubMed  PubMed Central  Google Scholar 

  • Zhou J-h, Ding Y-z, He Y, Chu Y-f, Zhao P, Ma L-y, Wang X-j, Li X-r, Liu Y-s (2014) The effect of multiple evolutionary selections on synonymous codon usage of genes in the Mycoplasma bovis genome. PLoS ONE 9(10):e108949

    PubMed  PubMed Central  Google Scholar 

  • Zhou M, Li X (2009) Analysis of synonymous codon usage patterns in different plant mitochondrial genomes. Mol Biol Rep 36(8):2039–2046

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Assam University, Silchar, India for providing the necessary facilities. The work was not funded by any agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supriyo Chakraborty.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests in this research work.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Yengkhom, S. & Uddin, A. Analysis of codon usage bias of chloroplast genes in Oryza species. Planta 252, 67 (2020). https://doi.org/10.1007/s00425-020-03470-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03470-7

Keywords

Navigation