Log in

Flower and early fruit development in a diploid strawberry, Fragaria vesca

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The diploid woodland strawberry, Fragaria vesca, is being recognized as a model for the more complex octoploid commercial strawberry, Fragaria × ananassa. F. vesca exhibits a short seed to seed cycle, can be easily transformed by Agrobacteria, and a draft genome sequence has been published. These features, together with its similar flower structure, potentially make F. vesca a good model for studying the flower development of other members of the Rosaceae family, which contains many economically important fruit trees and ornamental plants. To propel F. vesca’s role in genetic and genomic research and to facilitate the study of its reproductive development, we have investigated in detail F. vesca flower and early fruit development using a seventh generation inbred diploid line, Yellow Wonder 5AF7. We present here standardized developmental staging and detailed descriptions of morphological changes associated with flower and early fruit development based on images of hand dissected flowers, histological sections, and scanning electron microscopy. In situ hybridization with the F. vesca AGAMOUS homolog, FvAG, showed expression in young stamen and carpel primordia. This work lays the essential groundwork and standardization for future molecular, genetic, and genomic studies of F. vesca.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AG:

AGAMOUS

YW5AF7:

Yellow Wonder 5AF7

H4 × 4:

Hawaii 4 × 4

SEM:

Scanning electron micrograph

References

  • Anderson H, Guttridge C (1982) Strawberry truss morphology and the fate of high-order flower buds. Crop Res (Hort Res) 22:105–122

    Google Scholar 

  • Archbold DD, Dennis FG (1984) Quantification of free ABA and free and conjugated IAA in strawberry achene and receptacle tissue during fruit development. J Am Soc Hortic Sci 109:330–335

    CAS  Google Scholar 

  • Archbold D, Dennis F (1985) Strawberry receptacle growth and endogenous IAA content as affected by growth regulator application and achene removal. J Am Soc Hortic Sci 110:816–820

    CAS  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20

    PubMed  CAS  Google Scholar 

  • Buzgo M, Soltis D, Soltis P, Ma H (2004) Towards a comprehensive integration of morphological and genetic studies of floral development. Trends Plant Sci 9:164–173

    Article  PubMed  CAS  Google Scholar 

  • Castillejo C, De la Fuente JI, Iannetta P, Botella MA, Valpuesta V (2004) Pectin esterase gene family in strawberry fruit: study of FaPE1, a ripening-specific isoform. J Exp Bot 55:909–918

    Article  PubMed  CAS  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  PubMed  CAS  Google Scholar 

  • Darrow G (1966) The Strawberry: history breeding and physiology. Holt, Rinehart and Winston, New York

    Google Scholar 

  • Davis T, Yu H (1997) A linkage map of the diploid strawberry, Fragaria vesca. J Hered 88:215–221

    Article  CAS  Google Scholar 

  • Deng C, Davis TM (2001) Molecular identification of the yellow fruit color (c) locus in diploid strawberry: a candidate gene approach. Theor Appl Genet 103:316–322

    Article  CAS  Google Scholar 

  • Drews GN, Bowman JL, Meyerowitz EM (1991) Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65:991–1002

    Article  PubMed  CAS  Google Scholar 

  • Dubois A, Raymond O, Maene M, Baudino S, Langlade NB, Boltz V, Vergne P, Bendahmane M (2010) Tinkering with the C-function: a molecular frame for the selection of double flowers in cultivated roses. PLoS One 5:e9288

    Article  PubMed  Google Scholar 

  • Durner EF, Poling EB (1988) Strawberry developmental responses to photoperiod and temperature: a review. Adv Strawb Prod 7:6–14

    Google Scholar 

  • Fait A, Hanhineva K, Beleggia R, Dai N (2008) Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development. Plant Physiol 148:730–750

    Google Scholar 

  • Folta KM, Dhingra A (2007) Transformation of strawberry: the basis for translational genomics in Rosaceae. In Vitro Cell Dev Biol Plant 42:482–490

    Google Scholar 

  • Galletta GJ, Himelrick DG (1990) Small Fruit Crop Management. Prentice Hall, Engelwood Cliffs

    Google Scholar 

  • Giovannoni J (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749

    Article  PubMed  CAS  Google Scholar 

  • Hancock JF (1999) Strawberries. CABI Publishing, New York

    Google Scholar 

  • Hartmann HT (1947) Some effects of temperature and photoperiod on flower formation and runner production in the strawberry. Plant Physiol 22:407–420

    Article  PubMed  CAS  Google Scholar 

  • Hummer KE, Hancock JF (2009) Strawberry genomics: botanical history, cultivation, traditional breeding, and new technologies. In: Folta K, Gardiner SE (eds) Genetics and genomics of Rosaceae, plant genetics and genomic: crops and models 6. Springer Science + Business Media, LLC

  • Hytönen T, Elomaa P, Moritz T, Junttila O (2009) Gibberellin mediates daylength-controlled differentiation of vegetative meristems in strawberry (Fragaria x ananassa Duch). BMC Plant Biol 9:18

    Article  PubMed  Google Scholar 

  • Jensen WA (1962) Botanical Histochemistry. W.H Freeman, San Francisco

    Google Scholar 

  • Kania W (1973) Entwicklungsgeschichtliche Untersuchungen an Rasaceenbluten. Bot Jb Syst 93:175–246

    Google Scholar 

  • Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6:688–698

    Article  PubMed  CAS  Google Scholar 

  • Kronenberg H (1959) Poor fruit setting in strawberries. I. Euphytica 8:47–57

    Article  Google Scholar 

  • Liu CM, Meinke DW (1998) The titan mutants of Arabidopsis are disrupted in mitosis and cell cycle control during seed development. Plant J 16:21–31

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Franks RG, Klink VP (2000) Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTA. Plant Cell 12:1879–1892

    Article  PubMed  CAS  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69

    Article  PubMed  CAS  Google Scholar 

  • Mouhu K, Hytönen T, Folta K, Rantanen M, Paulin L, Auvinen P, Elomaa P (2009) Identification of flowering genes in strawberry, a perennial SD plant. BMC Plant Biol 9:122

    Article  PubMed  Google Scholar 

  • Nitsch JP (1950) Growth and morphogenesis of the strawberry as related to auxin. Am J Bot 37:211–215

    Article  CAS  Google Scholar 

  • Oosumi T, Gruszewski H, Blischak L, Baxter A, Wadl P, Shuman J, Veilleux RE, Shulaev V (2006) High-efficiency transformation of the diploid strawberry (Fragaria vesca) for functional genomics. Planta 223:1219–1230

    Article  PubMed  CAS  Google Scholar 

  • Perkins-Veazie PM (1995) Growth and ripening of strawberry fruit. Hortic Rev 17:267–297

    Google Scholar 

  • Perkins-Veazie PM, Huber DJ, Brecht JK (1995) Characterization of ethylene production in develo** strawberry fruit. Plant Growth Regul 17:33–39

    CAS  Google Scholar 

  • Qin Y, Teixeira da Silva JA, Zhang L, Zhang S (2008) Transgenic strawberry: state of the art for improved traits. Biotechnol Adv 26:219–232

    Article  PubMed  CAS  Google Scholar 

  • Reganold J, Andrews P, Reeve J, Carpenter-Boggs L, Schadt C, Alldredge JR, Ross C, Davies N, Zhou J (2010) Fruit and soil quality of organic and conventional strawberry agroecosystems. PLoS One 5(9):e12346. doi:10.1371/journal.pone.0012346

  • Rosin F, Aharoni A, Salentijn E, Schaart J (2003) Expression patterns of a putative homolog of AGAMOUS, STAG1, from strawberry. Plant Sci 165:959–968

    Google Scholar 

  • Rousseau-Gueutin M, Lerceteau-Köhler E, Barrot L, Sargent DJ, Monfort A, Simpson D, Arús P, Guérin G, Denoyes-Rothan B (2008) Comparative genetic map** between octoploid and diploid Fragaria species reveals a high level of colinearity between their genomes and the essential disomic behavior of the cultivated octoploid strawberry. Genetics 179:2045–2060

    Article  PubMed  Google Scholar 

  • Sanders PM, Bui AQ, Weterings K, Mcintire KN, Hsu Y, Lee PY, Truong MT, Beals TP, Goldberg RB (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11:297–322

    Article  CAS  Google Scholar 

  • Sargent DJ, Davis T, Simpson D (2009) Strawberry (Fragaria spp.) structural genomics. In: Folta K, Gardiner SE (eds) Genetics and genomics of Rosaceae, plant genetics and genomics: crops and models 6. Springer Science + Business Media, New York

    Google Scholar 

  • Schwab W, Schaart J, Rosati C (2009) Functional molecular biology research in Fragaria. In: Folta K, Gardiner SE (eds) Genetics and genomics of Rosaceae, plant genetics and genomics: crops and models 6. Springer Science + Business Media LLC, New York

    Google Scholar 

  • Serçe S, Hancock JF (2005) The temperature and photoperiod regulation of flowering and runnering in the strawberries, Fragaria chiloensis, F. virginiana, and F. × ananassa. Sci Hortic 103:167–177

    Article  Google Scholar 

  • Shulaev V, Korban SS, Sosinski B, Abbott A, Aldwinckle HS, Folta KM, Iezzoni A, Main D, Arús P, Dandekar AM, Lewers K, Brown SK, Davis TM, Gardiner SE, Potter D, Veilleux RE (2008) Multiple models for Rosaceae genomics. Plant Physiol 147:985–1003

    Article  PubMed  CAS  Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP, Burns P, Davis TM, Slovin JP, Bassil N, Hellens RP, Evans C, Harkins T, Kodira C, Desany B, Crasta OR, Jensen RV, Allan AC, Michael TP, Setubal JC, Celton JM, Rees DJ, Williams KP, Holt SH, Ruiz Rojas JJ, Chatterjee M, Liu B, Silva H, Meisel L, Adato A, Filichkin SA, Troggio M, Viola R, Ashman TL, Wang H, Dharmawardhana P, Elser J, Raja R, Priest HD, Bryant DW, Fox SE, Givan SA, Wilhelm LJ, Naithani S, Christoffels A, Salama DY, Carter J, Lopez Girona E, Zdepski A, Wang W, Kerstetter RA, Schwab W, Korban SS, Davik J, Monfort A, Denoyes-Rothan B, Arus P, Mittler R, Flinn B, Aharoni A, Bennetzen JL, Salzberg SL, Dickerman AW, Velasco R, Borodovsky M, Veilleux RE, Folta KM (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116

    Article  PubMed  CAS  Google Scholar 

  • Slovin J, Michael T (2011) Strawberry. Part 3 structural and functional genomics. In: Folta K, Kole C (eds) Genetics, genomics and breeding of berries. Science Publishers, Enfield, pp 162–193

    Chapter  Google Scholar 

  • Slovin J, Rabinowicz PD (2007) Fragaria vesca, a useful tool for Rosaceae genomics. In: Takeda F (ed) 6th North American Strawberry Symposium. American Society for Horticultural Science, Ventura, pp 112–117

  • Slovin JP, Schmitt K, Folta KM (2009) An inbred line of the diploid strawberry Fragaria vesca f. semperflorens for genomic and molecular genetic studies in the Rosaceae. Plant Methods 5:15

    Article  PubMed  Google Scholar 

  • Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    Article  PubMed  CAS  Google Scholar 

  • Stangeland B, Salehian Z (2002) An improved clearing method for GUS assay in Arabidopsis endosperm and seeds. Plant Mol Biol Report 20:107–114

    Article  Google Scholar 

  • Taiz L, Zeiger E (2006) Ethylene: the gaseous hormone. Plant Physiology. Sinauer Associates, Inc., Sunderland, pp 571–591

    Google Scholar 

  • Trainotti L, Pavanello A, Casadoro G (2005) Different ethylene receptors show an increased expression during the ripening of strawberries: does such an increment imply a role for ethylene in the ripening of these non-climacteric fruits? J Exp Bot 56:2037–2046

    Article  PubMed  CAS  Google Scholar 

  • Weberling F (1989) Morphology of flowers and inflorescences. Cambridge University Press, Cambridge

    Google Scholar 

  • Williamson SC, Yu H, Davis TM (1995) Shikamate dehydrogenase allozymes: inheritance and close linkage to fruit color in the diploid strawberry. J Hered 86:74–76

    CAS  Google Scholar 

  • Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35–39

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Tim Maugel of the Laboratory for Biological Ultrastructure, University of Maryland, College Park for assistance with SEM, and Heven Sze for use of her microscope. We are also grateful to anonymous reviewers and the editor for helpful suggestions to improve the manuscript. This work was supported by NSF grant MCB0923913 to Z.L. and J.S., the Hokensen graduate fellowship to CH, USDA CRIS project #1275-21000-185-00D and Maryland MAES Hatch Project (MD-CBMG-0525).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Janet P. Slovin or Zhongchi Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1.19 mb)

Supplementary material 2 (PDF 2.60 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollender, C.A., Geretz, A.C., Slovin, J.P. et al. Flower and early fruit development in a diploid strawberry, Fragaria vesca . Planta 235, 1123–1139 (2012). https://doi.org/10.1007/s00425-011-1562-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1562-1

Keywords

Navigation