Log in

Anionic derivatives of xyloglucan function as acceptor but not donor substrates for xyloglucan endotransglucosylase activity

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Tamarind xyloglucan was oxidised by reaction with sodium hypochlorite in the presence of 2,2,6,6-tetramethyl-1-piperidinyloxy free radical (TEMPO). Galactose residues and non-xylosylated glucose residues were thus converted into galacturonic and glucuronic acid residues, respectively, producing an anionic polysaccharide. Acid hydrolysis of oxidised xyloglucan yielded two aldobiouronic acids, deduced to be β-d-GalpA-(1→2)-d-Xyl and β-d-GlcpA-(1→4)-d-Glc. Anionic xyloglucan had a decreased ability to hydrogen-bond to cellulose and to complex with iodine. It was almost totally resistant to digestion by cellulase [endo-(1→4)-β-glucanase] and did not serve as a donor substrate for xyloglucan endotransglucosylase (XET) activity. Like several other anionic polysaccharides, it promoted XET activity when unmodified (non-ionic) xyloglucan was used as donor substrate. Anionic xyloglucan may mimic polyanions whose presence in the plant cell wall promotes the action of endogenous XTH proteins. NaOCl with TEMPO oxidised the heptasaccharide, XXXG, to form XXX-glucarate, which did serve as an acceptor substrate although at a rate approximately fourfold less than XXXG itself. Anionic derivatives of xyloglucan, acting as acceptor but not donor substrates, may be valuable tools for exploring the biological roles of XTHs in the integration versus the re-structuring of xyloglucan in the plant cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CMC:

Carboxymethylcellulose

DP:

Degree of polymerisation

GPC:

Gel-permeation chromatography

HEC:

Hydroxyethylcellulose

MLG:

Mixed-linkage (1→3), (1→4)-β-d-glucan

PyAW:

Pyridine/acetic acid/water (1:1:98, by vol., pH 4.7) containing 0.5% chlorobutanol

TEMPO:

2,2,6,6-Tetramethyl-1-piperidinyloxy

TFA:

Trifluoroacetic acid

TLC:

Thin-layer chromatography

XEH:

Xyloglucan endohydrolase (activity)

XET:

Xyloglucan endotransglucosylase (activity)

XGO:

Xyloglucan-derived oligosaccharide

XTH:

Xyloglucan endotransglucosylase/hydrolase (protein)

XXXGol, XLLG, etc.:

Oligosaccharides of xyloglucan (for abbreviated nomenclature see ref. Fry et al. 1993)

References

  • Ait Mohand F, Farkaš V (2006) Screening for hetero-transglycosylating activities in extracts from nasturtium (Tropaeolum majus). Carbohydr Res 341:577–581

    Article  CAS  Google Scholar 

  • Aubert D, Herzog M (1996) A new cDNA encoding a xyloglucan endo-transglycosylase-related polypeptide (AtXTR8) preferentially expressed in seedling, root and stem of Arabidopsis thaliana. Plant Sci 121:187–196

    Article  CAS  Google Scholar 

  • Baran R, Sulová Z, Stratilová E, Farkaš V (2000) **-pong character of nasturtium-seed xyloglucan endotransglycosylase (XET) reaction. Gen Physiol Biophys 19:427–440

    PubMed  CAS  Google Scholar 

  • Baydoun EA-H, Fry SC (1989) In vivo degradation and extracellular polymer-binding of xyloglucan nonasaccharide, a naturally occurring anti-auxin. J Plant Physiol 134:453–459

    CAS  Google Scholar 

  • Bragd PL, Besemer AC, Van Bekkum H (2000) Bromide-free TEMPO-mediated oxidation of primary alcohol groups in starch and methyl α-d-glucopyranoside. Carbohydr Res 328:355–363

    Article  PubMed  CAS  Google Scholar 

  • Campbell P, Braam J (1999) In-vitro activities of four xyloglucan endotransglycosylases from Arabidopsis. Plant J 18:371–382

    Article  PubMed  CAS  Google Scholar 

  • Chang PS, Robyt JFJ (1996) Oxidation of primary alcohol groups of naturally occurring polysaccharides with 2,2,6,6-tetramethyl-1-piperidine oxoammonium ion. Carbohydr Chem 15:819–830

    Article  CAS  Google Scholar 

  • Cutillas-Iturralde A, Lorences EP (1997) Effect of xyloglucan oligosaccharides on growth, viscoelastic properties and long-term extension of pea shoots. Plant Physiol 113:103–109

    PubMed  CAS  Google Scholar 

  • Davis NJ, Flitsch SL (1993) Selective oxidation of monosaccharide derivatives to uronic acids. Tetrahedron Lett 34:1181–1184

    Article  CAS  Google Scholar 

  • Dische Z (1958) Color reactions of carbohydrates. In: Whistler RL, Wolfrom MK (eds) Methods in carbohydrate chemistry, vol 1. Academic, New York, pp 475–514

    Google Scholar 

  • Edelmann HG, Fry SC (1992) Factors that affect the extraction of xyloglucan from the primary cell walls of suspension-cultured rose cells. Carbohydr Res 228:423–431

    Article  CAS  Google Scholar 

  • Fanutti C, Gidley MJ, Reid JSG (1993) Action of a pure xyloglucan endo-transglycosylase (formerly called xyloglucan-specific endo-(1→4)-β-d-glucanase) from the cotyledons of germinated nasturtium seeds. Plant J 3:691–700

    Article  PubMed  CAS  Google Scholar 

  • Fanutti C, Gidley MJ, Reid JS (1996) Substrate subsite recognition of the xyloglucan endo-transglycosylase or xyloglucan-specific endo-(1→4)-β-d-glucanase from the cotyledons of germinated nasturtium (Tropaeolum majus L.) seeds. Planta 200:221–228

    Article  PubMed  CAS  Google Scholar 

  • Fauré R, Saura-Valls M, Brumer H, Planas A, Cottaz S, Driguez H (2006) Synthesis of a library of xylogluco-oligosaccharides for active-site map** of xyloglucan endo-transglycosylase. J Org Chem 71:5151–5161

    Article  PubMed  CAS  Google Scholar 

  • Fry SC (1989a) The structure and functions of xyloglucan. J Exp Bot 40:1–11

    Article  CAS  Google Scholar 

  • Fry SC (1989b) Cellulases, hemicelluloses and auxin-stimulated growth: a possible relationship. Physiol Plant 75:532–536

    Article  CAS  Google Scholar 

  • Fry SC (1997) Novel ‘dot-blot’ assays for glycosyltransferases and glycosylhydrolases: optimization for xyloglucan endotransglycosylase (XET) activity. Plant J 11:1141–1150

    Article  CAS  Google Scholar 

  • Fry SC (2000) The growing plant cell wall: Chemical and metabolic analysis. Reprint Edition. The Blackburn Press, Caldwell, pp xviii + 333 [ISBN 1-930665-08-3]

  • Fry SC (2004) Tansley review: primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytol 161:641–675

    Article  CAS  Google Scholar 

  • Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK, Matthews KJ (1992) Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J 282:821–828

    PubMed  CAS  Google Scholar 

  • Fry SC, York WS, Albersheim P, Darvill A., Hayashi T, Joseleau JP, Kato Y, Lorences EP, Maclachlan GA, McNeil M, Mort A, Reid JSG, Seitz HU, Selvendran RR, Voragen AGJ, White AR (1993) An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiol Plant 89:1–3

    Article  CAS  Google Scholar 

  • Hayashi T (1989) Xyloglucans in the primary cell wall. Annu Rev Plant Physiol Plant Mol Biol 40:139–168

    Article  CAS  Google Scholar 

  • Hayashi T, Ogawa K, Mitsuishi Y (1994a) Characterization of the adsorption of xyloglucan to cellulose. Plant Cell Physiol 35:1199–1205

    CAS  Google Scholar 

  • Hayashi T, Takeda T, Ogawa K, Mitsuishi Y (1994b) Effects of the degree of polymerization on the binding of xyloglucan to cellulose. Plant Cell Physiol 35:893–899

    PubMed  CAS  Google Scholar 

  • Hetherington PR, Fry SC (1993) Xyloglucan endotransglycosylase activity in carrot cell suspensions during cell elongation and somatic embryogenesis. Plant Physiol 103:987–992

    PubMed  CAS  Google Scholar 

  • Hrmová M, Farkaš V, Lahnstein J, Fincher GB (2007) A barley xyloglucan xyloglucosyl transferase covalently links xyloglucan, cellulosic substrates, and (1,3;1,4)-β-d-glucans. J Biol Chem 282:12951–12962

    Article  PubMed  Google Scholar 

  • Ito H, Nishitani K (1999) Visualization of EXGT-mediated molecular grafting activity by means of a fluorescent-labeled xyloglucan oligomer. Plant Cell Physiol 40:1172–1176

    CAS  Google Scholar 

  • Jiang B, Drouet E, Milas M, Rinaudo M (2000) Study on TEMPO-mediated selective oxidation of hyaluronan and the effects of salt on the reaction kinetics. Carbohydr Res 327:455–461

    Article  PubMed  CAS  Google Scholar 

  • Johansson P, Brumer H, Baumann MJ, Kallas ÅM, Henriksson H, Denman SE, Teeri TT, Jones TA (2004) Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding. Plant Cell 16:874–886

    Article  PubMed  CAS  Google Scholar 

  • Kooiman P (1960) A method for determination of amyloid in plant seeds. Rec Trav Chim Pay-Bas 79:675–678

    CAS  Google Scholar 

  • Kooiman P (1961) The constitution of Tamarindus-amyloid. Rec Trav Chim Pay-Bas 80:849–865

    Google Scholar 

  • Levy S, Maclachlan G, Staehelin LA (1997) Xyloglucan sidechains modulate binding to cellulose during in vitro binding assays as predicted by conformational dynamics simulations. Plant J 11:373–386

    Article  PubMed  CAS  Google Scholar 

  • Lorences EP, Fry SC (1993) Xyloglucan oligosaccharides, acting as acceptor substrates for xyloglucan endotransglycosylase, promote the depolymerisation of xyloglucan. Physiol Plant 88:105–112

    Article  CAS  Google Scholar 

  • McDougall GJ, Fry SC (1990) Xyloglucan oligosaccharides promote growth and activate cellulase: evidence for a role of cellulase in cell expansion. Plant Physiol 93:1042–1048

    PubMed  CAS  Google Scholar 

  • Miller JG, Farkaš V, Sharples SC, Fry SC (2007) O-Oligosaccharidyl-1-amino-1-deoxyalditols as intermediates for fluorescent labelling of oligosaccharides. Carbohydr Res 342:44–54

    Article  PubMed  CAS  Google Scholar 

  • Nishitani K (1997) The role of endoxyloglucan transferase in the organization of plant cell walls. Int Rev Cytol 173:157–206

    PubMed  CAS  Google Scholar 

  • Nishitani K (2005) Division of roles among members of the XTH gene family in plants. Plant Biosystems 139:98–101

    Google Scholar 

  • Nishitani K, Tominaga R (1991) In-vitro molecular weight increase in xyloglucans by an apoplastic enzyme preparation from epicotyls of Vigna angularis. Physiol Plant 82:490–497

    Article  CAS  Google Scholar 

  • Nishitani K, Tominaga R (1992) Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J Biol Chem 267:21058–21064

    PubMed  CAS  Google Scholar 

  • Nooy AEJ de, Besemer AC, Van Bekkum H (1994) Highly selective TEMPO-mediated oxidation of primary alcohol groups in polysaccharides. Rec Trav Chim Pay-Bas 113:165–166

    Google Scholar 

  • Nooy AEJ de, Besemer AC, Van Bekkum H (1995) Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr Res 269:89–98

    Article  Google Scholar 

  • Offord RE (1966) Electrophoretic mobilities of peptides on paper and their use in the determination of amide groups. Nature 211:591–593

    Article  PubMed  CAS  Google Scholar 

  • Okazawa K, Sato Y, Nakagawa T, Asada K, Kato I, Tomita E, Nishitani K (1993) Molecular cloning and cDNA sequencing of endoxyloglucan transferase, a novel class of glycosyltransferase that mediates molecular grafting between matrix polysaccharides in plant cell walls. J Biol Chem 268:25364–25368

    PubMed  CAS  Google Scholar 

  • Ookawara R, Satoh S, Yoshioka T, Ishizawa K (2005) Expression of alpha-expansin and xyloglucan endotransglucosylase/hydrolase genes associated with shoot elongation enhanced by anoxia, ethylene and carbon dioxide in arrowhead (Sagittaria pygmaea Miq.) tubers. Ann Bot 96:693–702

    Article  PubMed  CAS  Google Scholar 

  • Osato Y, Yokoyama R, Nishitani K (2006) Principal role for AtXTH18 in Arabidopsis thaliana root growth: a functional analysis using RNAi plants. J Plant Res 119:153–162

    Article  PubMed  CAS  Google Scholar 

  • Peña MJ, Ryden P, Madson M, Smith AC, Carpita NC (2004) The galactose residues of xyloglucan are essential to maintain mechanical strength of the primary cell walls in Arabidopsis during growth. Plant Physiol 134:443–451

    Article  PubMed  CAS  Google Scholar 

  • Popper ZA, Fry SC (2003) Primary cell wall composition of bryophytes and charophytes. Ann Bot 91: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Potter I, Fry SC (1993) Xyloglucan endotransglycosylase activity in pea internode: effects of applied gibberellic acid. Plant Physiol 103:235–241

    Article  PubMed  CAS  Google Scholar 

  • Potter I, Fry SC (1994) Changes in xyloglucan endotransglycosylase (XET) activity during hormone-induced growth in lettuce and cucumber hypocotyls and spinach cell suspension cultures. J Exp Bot 45:1703–1710

    CAS  Google Scholar 

  • Pritchard J, Hetherington PR, Fry SC, Tomos AD (1993) Xyloglucan endotransglycosylase activity, microfibril orientation and the profiles of cell wall properties along growing regions of maize roots. J Exp Bot 44:1281–1289

    Article  CAS  Google Scholar 

  • Purugganan MM, Braam J, Fry SC (1997) The Arabidopsis TCH4 xyloglucan endotransglycosylase. Substrate specificity, pH optimum and cold tolerance. Plant Physiol 115:181–190

    Article  PubMed  CAS  Google Scholar 

  • Rose JK, Braam J, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol 43:1421–1435

    Article  PubMed  CAS  Google Scholar 

  • Saura-Valls M, Fauré R, Ragàs S, Piens K, Brumer H, Teeri TT, Cottaz S, Driguez H, Planas A (2006) Kinetic analysis using low-molecular mass xyloglucan oligosaccharides defines the catalytic mechanism of a Populus xyloglucan endotransglycosylase. Biochem J 395:99–106

    Article  PubMed  CAS  Google Scholar 

  • Smidsrød O, Haug A, Larson B (1966) The influence of pH on the rate of hydrolysis of acidic polysaccharides. Acta Chem Scand 20:1026–1034

    Article  PubMed  Google Scholar 

  • Smith RC, Fry SC (1991) Endotransglycosylation of xyloglucans in plant cell suspension cultures. Biochem J 279:529–535

    PubMed  CAS  Google Scholar 

  • Smith RC, Matthews R, Schünmann P, Chandler P (1996) The regulation of leaf elongation and xyloglucan endotransglycosylase by gibberellin in ‘Himalaya’ barley (Hordeum vulgare L.). J Exp Bot 47:1395–1404

    Article  CAS  Google Scholar 

  • Strohmeier M, Hrmová M, Fischer M, Harvey AJ, Fincher GB, Pleiss J (2004) Molecular modeling of family GH16 glycoside hydrolases: potential roles for xyloglucan transglucosylases/hydrolases in cell wall modification in the Poaceae. Protein Sci 13:3200–3213

    Article  PubMed  CAS  Google Scholar 

  • Takeda T, Fry SC (2004) Control of xyloglucan endotransglucosylase activity by salts and anionic polymers. Planta 219:722–732

    Article  PubMed  CAS  Google Scholar 

  • Takeda T, Furuta Y, Awano T, Mizuno K, Hayashi T (2002) Suppression and acceleration of cell elongation by integration of xyloglucans in pea stem segments. Proc Natl Acad Sci USA 99:9055–9060

    Article  PubMed  CAS  Google Scholar 

  • Thompson JE, Fry SC (2001) Restructuring of wall-bound xyloglucan by transglycosylation in living plant cells. Plant J 26:23–34

    Article  PubMed  CAS  Google Scholar 

  • Thompson JE, Smith RC, Fry SC (1997) Xyloglucan undergoes interpolymeric transglycosylation during binding to the plant cell wall in vivo: evidence from 13C/3H dual labelling and isopycnic centrifugation in caesium trifluoroacetate. Biochem J 327:699–708

    PubMed  CAS  Google Scholar 

  • Vissenberg K, Martinez-Vilchez IM, Verbelen JP, Miller JG, Fry SC (2000) In-vivo colocalization of xyloglucan endotransglycosylase activity and its donor substrate in the elongation zone of Arabidopsis roots. Plant Cell 12:1229–1238

    Article  PubMed  CAS  Google Scholar 

  • Vissenberg K, Fry SC, Verbelen JP (2001) Root hair initiation is coupled to a highly localized increase of xyloglucan endotransglycosylase action in Arabidopsis roots. Plant Physiol 127:1125–1135

    Article  PubMed  CAS  Google Scholar 

  • Whitney SEC, Gothard MGE, Mitchell JT, Gidley MJ (1999) Roles of cellulose and xyloglucan in determining the mechanical properties of primary plant cell walls. Plant Physiol 121:657–663

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Dr Janet Braam (Rice University, Houston, Texas) for providing the XTH24 preparation. T.T. thanks the Japan Society for Promotion of Science (JSPS) for the award of a Fellowship. We thank the Biotechnology and Biological Sciences Research Council (UK) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Fry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeda, T., Miller, J.G. & Fry, S.C. Anionic derivatives of xyloglucan function as acceptor but not donor substrates for xyloglucan endotransglucosylase activity. Planta 227, 893–905 (2008). https://doi.org/10.1007/s00425-007-0665-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0665-1

Keywords

Navigation