Log in

Modification of cell proliferation patterns alters leaf vein architecture in Arabidopsis thaliana

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Formation of leaf vascular pattern requires regulation of a number of cellular processes, including cell proliferation. To assess the role of cell proliferation during vein order formation, leaf development in genetic lines exhibiting aberrant cell proliferation patterns due to altered expression patterns of ANT and ICK1 genes was analyzed. Modification of cell proliferation patterns alters the number of higher order veins and the number of minor tertiary veins remodeled as intersecondary veins in Arabidopsis rosette leaves. Minor vein complexity, as indicated by branch point and freely ending veinlet number, is highly correlated with a decrease or increase in cell proliferation. Observations of procambial strand formation in modified cell proliferation pattern lines showed that vein pattern is specified early in leaf development and that formation of freely ending veinlets is temporally correlated with the expansion of ground meristem when cell proliferation is terminated prematurely. Taken together, our observations indicate that: (1) genes that modulate cell proliferation play a key role in regulating the meristematic competence of ground meristem cells to form procambium and vein pattern during leaf development, and (2) ANT is a crucial part of this regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANT :

AINTEGUMENTA

ATHB-8 :

Arabidopsis thaliana homeobox gene-8

CYCB1 :

CYCLIN B1

ICK1 :

INHIBITOR OF CYCLIN DEPENDENT KINASE1

GUS :

GLUCURONIDASE

References

  • Baima S, Nobili F, Sessa G, Lucchetti S, Ruberti I, Morelli G (1995) The expression of the ATHB-8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana. Development 121:4171–4182

    PubMed  CAS  Google Scholar 

  • Beemster GTS, Fiorani F, Inzé D (2003) Cell cycle: the key to plant growth control? Trends Plant Sci 8(4):154–158

    Article  PubMed  CAS  Google Scholar 

  • Beemster GTS, Vercruysse S, DeVeylder L, Kuiper M, Inzé D (2006) The Arabidopsis leaf as a model system for investigating the role of cell cycle regulation in organ growth. J Plant Res 119:43–50

    Article  PubMed  Google Scholar 

  • Candela H, Martinez-Laborda A, Micol JL (1999) Venation pattern formation in Arabidopsis thaliana vegetative leaves. Dev Biol 205:205–216

    Article  PubMed  CAS  Google Scholar 

  • De Veylder L, Beeckman T, Beemster GTS, Krols L, Terras F, Landrieu I, Van Der Schueren E, Maes S, Naudts M, Inzé D (2001) Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. Plant Cell 13:1653–1667

    Article  PubMed  Google Scholar 

  • Dengler N (2001) Regulation of vascular development. J Plant Growth Reg 20:1–13

    Article  CAS  Google Scholar 

  • Dengler N, Kang J (2001) Vascular patterning and leaf shape. Curr Opin Plant Biol 4:50–56

    Article  PubMed  CAS  Google Scholar 

  • Donnelly PM, Bonetta D, Tsukaya H, Dengler RE, Dengler NG (1999) Cell cycling and cell enlargement in develo** leaves of Arabidopsis. Dev Biol 215:407–419

    Article  PubMed  CAS  Google Scholar 

  • Elliot RC, Betzner AS, Huttner E, Oakes MP, Tucker WQJ, Gerentes D, Perez P, Smyth DR (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168

    Article  Google Scholar 

  • Esau K (1965) Vascular differentiation in plants. Holt, Rinehart and Winston, New York

    Google Scholar 

  • Gallois JL, Fabiana RN, Mizukami Y, Sablowski R (2004) WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Gene Dev 18:375–380

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, **e Q, Chua NH (2003) The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell 15:1951–1961

    Article  PubMed  CAS  Google Scholar 

  • Kang J, Dengler N (2002) Cell cycling frequency and expression of the homeobox gene AtHB-8 during leaf vein development in Arabidopsis. Planta 216:212–219

    Article  PubMed  CAS  Google Scholar 

  • Kang J, Dengler N (2004) Vein pattern development in adult leaves of Arabidopsis thaliana. Int J Plant Sci 165:231–242

    Article  Google Scholar 

  • Klucher KM, Chow H, Reiser L, Fischer RL (1996) The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 8:137–153

    Article  PubMed  CAS  Google Scholar 

  • Krizek BA (1999) Ectopic expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs. Dev Genet 25:224–236

    Article  PubMed  CAS  Google Scholar 

  • Lui H, Wang H, DeLong C, Fowke LC, Crosby WL, Fobert PR (2000) The Arabidopsis Cdc2a-interacting protein ICK2 is structurally related to ICK1 and is a potent inhibitor of cyclin-dependent kinase activity in vitro. Plant J 21:379–385

    Article  PubMed  CAS  Google Scholar 

  • Mattsson J, Sung ZR, Berleth T (1999). Responses of plant vascular systems to auxin transport inhibition. Development 126:2979–2991

    PubMed  CAS  Google Scholar 

  • Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol 131:1327–1339

    Article  PubMed  CAS  Google Scholar 

  • Mizukami Y (2001) A matter of size: developmental control of organ size in plants. Curr Opin Plant Biol 4:533–539

    Article  PubMed  CAS  Google Scholar 

  • Mizukami Y, Fischer RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci 97:942–947

    Article  PubMed  CAS  Google Scholar 

  • Nelson T, Dengler N (1997) Leaf vascular pattern formation. Plant Cell 9:1121–1135

    Article  PubMed  CAS  Google Scholar 

  • Ormenese S, de Almeida Engler J, de Groodt R, De Veylder L, Inzé D, Jacqmard A (2004) Analysis of the spatial expression pattern of seven Kip related proteins (KRPs) in the shoot apical meristem of Arabidopsis thaliana. Ann Bot 93:575–580

    Article  PubMed  CAS  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Scarpella E, Francis P, Berleth T (2004) Stage-specific markers define early steps of procambium development in Arabidopsis leaves and correlate termination of vein formation with mesophyll differentiation. Development 131:3445–3455

    Article  PubMed  CAS  Google Scholar 

  • Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20:1015–1027

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    PubMed  CAS  Google Scholar 

  • Sieburth LE, Deyholos MK (2006) Vascular development: the long and winding road. Curr Opin Plant Biol 9:48–54

    Article  PubMed  CAS  Google Scholar 

  • Telfer A, Poethig RS (1994) Leaf development. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis. Cold Spring Harbor Laboratory Press, New Jersey, pp 379–401

    Google Scholar 

  • Tsukaya H (2002) Interpretation of mutants in leaf morphology: genetic evidence for a compensatory system in leaf morphogenesis that provides a new link between cell and organismal theories. Int Rev Cytol 217:1–39

    Article  PubMed  CAS  Google Scholar 

  • Tsukaya H (2003) Organ shape and size: a lesson from studies of leaf morphogenesis. Curr Opin Plant Biol 6:57–62

    Article  PubMed  Google Scholar 

  • Tsukaya H, Beemster GTS (2006) Genetics, cell cycle and cell expansion in organogenesis in plants. J Plant Res 119:1–4

    Article  PubMed  Google Scholar 

  • Turner S, Sieburth LE (2002) Vascular patterning. In: The Arabidopsis book. American Society of Plant Biologists. doi:10.1199/tab.0073

  • Verkest A, Weinl C, Inzé D, De Veylder L, Schnittger A (2005) Switching the cell cycle. Kip-related proteins in plant cell cycle control. Plant Physiol 139:1099–1106

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Fowke LC, Crosby WL (1997) A plant cyclin-dependent kinase inhibitor gene. Nature 386:451–452

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Zhou Y, Gilmer S, Whitwill S, Fowke LC (2000) Expression of the plant cyclin-dependent kinase inhibitor ICK1 affects cell division, plant growth and morphology. Plant J 24:613–623

    Article  PubMed  CAS  Google Scholar 

  • Wenzel CL, Schuetz M, Yu Q, Mattsson J (2007) Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. Plant J 49:387–398

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Fowke LC, Wang H (2002) Plant CDK inhibitors: studies of interactions with cell cycle regulators in the yeast two-hybrid system and functional comparisons in transgenic Arabidopsis plants. Plant Cell Rep 20:967–975

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. John Celenza (Boston University, Boston, MA, USA) and Dr. Giorgio Morelli (Instituto Nazionale di Ricerca per gli Alimenti e la Nutrizione, Italy) for gifts of the CYCB1;1::GUS and pATHB8::GUS reporter constructs, respectively. We are also grateful to Dr. Susan Gilmer for 35S::ICK1 crosses, Dr. Timothy Dickinson for statistical advice and to Dr. Thomas Berleth and Dr. Enrico Scarpella for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, J., Mizukami, Y., Wang, H. et al. Modification of cell proliferation patterns alters leaf vein architecture in Arabidopsis thaliana . Planta 226, 1207–1218 (2007). https://doi.org/10.1007/s00425-007-0567-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0567-2

Keywords

Navigation