Log in

Disruption of the nitrate transporter genes AtNRT2.1 and AtNRT2.2 restricts growth at low external nitrate concentration

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The high-affinity transport systems in Arabidopsis thaliana (L.) Heynh. involve potentially seven genes. Among these, the AtNRT2.1 and/or AtNRT2.2 genes have been shown to play a major role in the inducible component of this transport system. The physiological impact of a disruption of AtNRT2.1 and AtNRT2.2 on plant growth and N-metabolism was investigated. The reduced nitrate uptake in the mutant under a limiting N-regime was found to correlate with a significant difference in shoot/root ratio between wild type and mutant and a drastically reduced nitrate level in the shoot of the mutant. Carbohydrate analyses of plants under a low nitrate supply revealed a slight increase in glucose and fructose in the mutant shoots as well as an increase in sucrose and starch contents in mutant shoots. Interestingly, the AtNRT2.4 and AtNRT2.5 genes were over-expressed in the mutant growing in reduced N-conditions, without any compensation by root nitrate influx. These results are discussed in the context of the putative role of the different NRT2 genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–d
Fig. 3a–d

Similar content being viewed by others

Abbreviations

DW :

Dry weight

FW :

Fresh weight

HATS :

High-affinity transport system

LATS :

Low-affinity transport system

NRT :

Nitrate transporter

WT :

Wild type

References

  • Agren GI, Ingestad T (1987) Root:shoot ration is a balance between nitrogen productivity and photosynthesis. Plant Cell Environ 10:579–586

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cerezo M, Tillard P, Filleur S, Munos S, Daniel-Vedele F, Gojon A (2001) Major alterations of the regulation of root NO(3)(−) uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis. Plant Physiol 127:262–71

    Article  CAS  PubMed  Google Scholar 

  • Crawford NM (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 7:857–868

    Article  Google Scholar 

  • Crawford NM, Smith M, Bellissimo D, Davis RW (1988) Sequence and nitrate regulation of the Arabidopsis thaliana mRNA encoding nitrate reductase, a metalloflavoprotein with three functional domains. Proc Natl Acad Sci USA 85:5006–10

    CAS  PubMed  Google Scholar 

  • Daniel-Vedele F, Caboche M (1993) A tobacco cDNA clone encoding a GATA-1 zinc finger protein homologous to regulators of nitrogen metabolism in fungi. Mol Gen Genet 240:365–373

    CAS  PubMed  Google Scholar 

  • Delhon P, Gojon A, Tillard P, Passama L (1995) Diurnal regulation of NO3 uptake in soybean plants.1. Changes in NO3 influx, efflux, and N utilization in the plant during the day night cycle. J Exp Bot 46:1585–1594

    CAS  Google Scholar 

  • Dennison KL, Robertson WR, Lewis BD, Hirsch RE, Sussman MR, Spalding EP (2001) Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis. Plant Physiol 127:1012–9

    Article  CAS  PubMed  Google Scholar 

  • Filleur S, Daniel-Vedele F (1999) Expression analysis of a high-affinity nitrate transporter isolated from Arabidopsis thaliana by differential display. Planta 207:461–9

    Article  CAS  PubMed  Google Scholar 

  • Filleur S, Dorbe MF, Cerezo M, Orsel M, Granier F, Gojon A, Daniel-Vedele F (2001) An arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Lett 489:220–4

    Article  CAS  PubMed  Google Scholar 

  • Forde BG (2000) Nitrate transporters in plants: structure, function and regulation. Biochim Biophys Acta 1465:219–35

    CAS  PubMed  Google Scholar 

  • Foyer C, Ferrario-Mery S, Noctor G (2001) Interactions between carbon and nitrogen metabolism. In: Lea P, Morot-Gaudry JF (eds) Plant nitrogen. Springer, Berlin Heidelberg New York, pp 237–254

  • Glass ADM, Siddiqi MY (1995) Nitrogen absorption by plants roots. Nitrogen nutrition in higher plants. Associated Publishing, New Delhi, pp 21–56

  • Guo FQ, Wang R, Chen M, Crawford NM (2001) The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) is activated and functions in nascent organ development during vegetative and reproductive growth. Plant Cell 13:1761–77

    CAS  PubMed  Google Scholar 

  • Kaiser BN, Rawat SR, Siddiqi MY, Masle J, Glass AD (2002) Functional analysis of an Arabidopsis T-DNA “knockout” of the high-affinity NH4(+) transporter AtAMT1;1. Plant Physiol 130:1263–75

    Article  CAS  PubMed  Google Scholar 

  • Lejay L, Tillard P, Lepetit M, Olive F, Filleur S, Daniel-Vedele F, Gojon A (1999) Molecular and functional regulation of two NO3 uptake systems by N- and C-status of Arabidopsis plants. Plant J 18:509–19

    Article  CAS  PubMed  Google Scholar 

  • Lejay L, Gansel X, Cerezo M, Tillard P, Müller C, Krapp A, von Wirén N, Daniel-Vedele F, Gojon A (2003) Regulation of root ion transporters by photosynthesis: functional importance and relation with hexokinase. Plant Cell 15:2218–2232

    Article  CAS  PubMed  Google Scholar 

  • Liboz T, Bardet C, Le Van Thai A, Axelos M, Lescure B (1990) The four members of the gene family encoding the Arabidopsis thaliana translation elongation factor EF-1 alpha are actively transcribed. Plant Mol Biol 14:107–10

    CAS  PubMed  Google Scholar 

  • Martinoia E, Heck U, Wiemken A (1981) Vacuoles as storage comparments for nitrate in barley leaves. Nature 289:292–294

    CAS  Google Scholar 

  • Okamoto M, Vidmar JJ, Glass AD (2003) Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant Cell Physiol 44:304–17

    Article  CAS  PubMed  Google Scholar 

  • Orsel M, Filleur S, Fraisier V, Daniel-Vedele F (2002a) Nitrate transport in plants: which gene and which control? J Exp Bot 53:825–33

    Article  CAS  PubMed  Google Scholar 

  • Orsel M, Krapp A, Daniel-Vedele F (2002b) Analysis of the NRT2 nitrate transporter family in Arabidopsis. Structure and gene expression. Plant Physiol 129:886–96

    Article  CAS  PubMed  Google Scholar 

  • Reynolds HL, D’Antonio C (1996) The ecological significance of plasticity in root weight ration in response to nitrogen. Plant Soil 185:75–97

    CAS  Google Scholar 

  • Scheible WR, Lauerer M, Schulze ED, Caboche M, Stitt M (1997) Accumulation of nitrate in the shoot acts as a signal to regulate shoot–root allocation in tobacco. Plant J 11:671–691

    Article  CAS  Google Scholar 

  • Tsay YF, Schroeder JI, Feldmann KA, Crawford NM (1993) The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72:705–13

    CAS  PubMed  Google Scholar 

  • Unkles SE, Hawker KL, Grieve C, Campbell EI, Montague P, Kinghorn JR (1991) cnrA encodes a nitrate transporter in Aspergillus nidulans. Proc Natl Acad Sci USA 88:204–208

    CAS  PubMed  Google Scholar 

  • Unkles SE, Zhou D, Siddiqi MY, Kinghorn JR, Glass AD (2001) Apparent genetic redundancy facilitates ecological plasticity for nitrate transport. EMBO J 20:6246–55

    Article  CAS  PubMed  Google Scholar 

  • Zhuo D, Okamoto M, Vidmar JJ, Glass AD (1999) Regulation of a putative high-affinity nitrate transporter (Nrt2;1At) in roots of Arabidopsis thaliana. Plant J 17:563–8

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Hoaï-Nam Truong and Christian Meyer (Unité de la Nutrition Azotée des Plantes, INRA Versailles, France) and Patricia Baker (Institut Pasteur, Paris, France) for critical reading of the manuscript and Joël Talbotec and François Gosse (Unité de la Nutrition Azotée des Plantes, INRA Versailles, France) for their great help in taking care of the plants. The work was supported in part by a DAAD grant to K.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Daniel-Vedele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orsel, M., Eulenburg, K., Krapp, A. et al. Disruption of the nitrate transporter genes AtNRT2.1 and AtNRT2.2 restricts growth at low external nitrate concentration. Planta 219, 714–721 (2004). https://doi.org/10.1007/s00425-004-1266-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1266-x

Keywords

Navigation