Log in

Nutritional models of foetal programming and nutrigenomic and epigenomic dysregulations of fatty acid metabolism in the liver and heart

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Barker’s concept of ‘foetal programming’ proposes that intrauterine growth restriction (IUGR) predicts complex metabolic diseases through relationships that may be further modified by the postnatal environment. Dietary restriction and deficit in methyl donors, folate, vitamin B12, and choline are used as experimental conditions of foetal programming as they lead to IUGR and decreased birth weight. Overfeeding and deficit in methyl donors increase central fat mass and lead to a dramatic increase of plasma free fatty acids (FFA) in offspring. Conversely, supplementing the mothers under protein restriction with folic acid reverses metabolic and epigenomic phenotypes of offspring. High-fat diet or methyl donor deficiency (MDD) during pregnancy and lactation produce liver steatosis and myocardium hypertrophy that result from increased import of FFA and impaired fatty acid β-oxidation, respectively. The underlying molecular mechanisms show dysregulations related with similar decreased expression and activity of sirtuin 1 (SIRT1) and hyperacetylation of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α). High-fat diet and overfeeding impair AMPK-dependent phosphorylation of PGC-1α, while MDD decreases PGC-1α methylation through decreased expression of PRMT1 and cellular level of S-adenosyl methionine. The visceral manifestations of metabolic syndrome are under the influence of endoplasmic reticulum (ER) stress in overnourished animal models. These mechanisms should also deserve attention in the foetal programming effects of MDD since vitamin B12 influences ER stress through impaired SIRT1 deacetylation of HSF1. Taken together, similarities and synergies of high-fat diet and MDD suggest, therefore, considering their consecutive or contemporary influence in the mechanisms of complex metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AMPK:

AMP-activated protein kinase

Cbl:

Cobalamin

DAG:

Diacylglycerol

DMR:

Differentially methylated region

DNMT:

DNA (cytosine-5)-methyltransferase

ERR-α:

Oestrogen-related receptor alpha

FA:

Fatty acid

FAD:

Flavin adenine dinucleotide

FFA:

Free fatty acids

GCN5:

General control non-derepressible 5

GR:

Glucocorticoid receptor

HSF1:

Heat shock factor protein 1

HDAC:

Histone deacetylase

HDM:

Histone demethylase

HMT:

Histone methyltransferase

IGF1:

Insulin-like growth factor 1

IL-6:

Interleukin-6

IUGR:

Intrauterine growth restriction

MS:

Methionine synthase

MTHFR:

Methylenetetrahydrofolate reductase

MDD:

Methyl donor deficiency

mTOR:

Target of rapamycin

NAD+ :

Nicotinamide dinucleotide

NAFLD:

Non-alcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

OCM:

One-carbon metabolism

PPAR-α:

Peroxisome proliferator-activated receptor alpha

PGC-1α:

Peroxisome proliferator-activated receptor-γ coactivator 1α

POMC:

Preproopiomelanocortin

PRMT1:

Protein arginine methyltransferase 1

ROS:

Reactive oxygen species

SAM:

S-adenosyl methionine

SAH:

S-adenosyl homocysteine

5-HT:

Serotonin

SIRT:

Sirtuins

SREBP1c:

Sterol response element binding protein 1c

SAT:

Subcutaneous adipose tissue

TNF-α:

Tumour necrosis factor-alpha

T2DM:

Type 2 diabetes mellitus

VAT:

Visceral adipose tissue

References

  1. Aagaard-Tillery KM, Grove K, Bishop J, Ke X, Fu Q, McKnight R, Lane RH (2008) Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. J Mol Endocrinol 41:91–102

    PubMed Central  PubMed  CAS  Google Scholar 

  2. Akchiche N, Bossenmeyer-Pourié C, Kerek R, Martin N, Pourié G, Koziel V, Helle D, Alberto JM, Ortiou S, Camadro JM, léger T, Guéant JL, Daval JL (2012) Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells. FASEB J 26:3980–3992

    PubMed  CAS  Google Scholar 

  3. Almén MS, Jacobsson JA, Moschonis G, Benedict C, Chrousos GP, Fredriksson R, Schiöth HB (2012) Genome wide analysis reveals association of a FTO gene variant with epigenetic changes. Genomics 99:132–137

    PubMed  Google Scholar 

  4. Andringa KK, King AL, Eccleston HB, Mantena SK, Landar A, Jhala NC, Dickinson DA, Squadrito GL, Bailey SM (2010) Analysis of the liver mitochondrial proteome in response to ethanol and S-adenosylmethionine treatments: novel molecular targets of disease and hepatoprotection. Am J Physiol Gastrointest Liver Physiol 298:G732–G745

    PubMed Central  PubMed  CAS  Google Scholar 

  5. Bailey SM, Landar A, Darley-Usmar V (2005) Mitochondrial proteomics in free radical research. Free Radic Biol Med 38:175–188

    PubMed  CAS  Google Scholar 

  6. Bailey SM, Robinson G, Pinner A, Chamlee L, Ulasova E, Pompilius M, Page GP, Chhieng D, Jhala N, Landar A, Kharbanda KK, Ballinger S, Darley-Usmar V (2006) S-adenosylmethionine prevents chronic alcohol-induced mitochondrial dysfunction in the rat liver. Am J Physiol Gastrointest Liver Physiol 291:G857–G867

    PubMed  CAS  Google Scholar 

  7. Banke NH, Yan L, Pound KM, Dhar S, Reinhardt H, De Lorenzo MS, Vatner SF, Lewandowski ED (2012) Sexual dimorphism in cardiac triacylglyceride dynamics in mice on long term caloric restriction. J Mol Cell Cardiol 52:733–740

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Banks AS, Kon N, Knight C, Matsumoto M, Gutierrez-Juarez R, Rossetti L, Gu W, Accili D (2008) SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab 8:333–341

    PubMed Central  PubMed  CAS  Google Scholar 

  9. Barbieri M, Di Filippo C, Esposito A, Marfella R, Rizzo MR, D’Amico M, Ferraraccio F, Di Ronza C, Duan SZ, Mortensen RM, Rossi F, Paolisso G (2012) Effects of PPARs agonists on cardiac metabolism in littermate and cardiomyocyte-specific PPAR-γ-knockout (CM-PGKO) mice. PLoS One 7:e35999

    PubMed Central  PubMed  CAS  Google Scholar 

  10. Barker DJP (2004) The developmental origins of adult disease. J Am Coll Nutr 23(suppl 6):588S–595S

    PubMed  CAS  Google Scholar 

  11. Barres R, Kirchner H, Rasmussen M, Yan J, Kantor FR, Krook A, Näslund E, Zierath JR (2013) Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep 3:1020–1027

    PubMed  CAS  Google Scholar 

  12. Battaglia-Hsu SF, Akchiche N, Noel N, Alberto JM, Jeannesson E, Daval JL, Gueant JL (2009) Vitamin B12 deficiency reduces proliferation and promotes differentiation of neuroblastoma cells and upregulates PP2A, proNGF and TACE. Proc Natl Acad Sci U S A 16:21930–21935

    Google Scholar 

  13. Bell CG, Finer S, Lindgren CM, Wilson GA, Rakyan VK, Teschendorff AE, Akan P, Stupka E, Down TA, Prokopenko I, Morison IM, Mill J, Pidsley R (2010) Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO type 2 diabetes and obesity susceptibility locus. PLoS ONE 5:e14040

    PubMed Central  PubMed  Google Scholar 

  14. Bergen NE, Jaddoe VW, Timmermans S, Hofman A, Lindemans J, Russcher H, Raat H, Steegers-Theunissen RP, Steegers EA (2012) Homocysteine and folate concentrations in early pregnancy and the risk of adverse pregnancy outcomes: the Generation R Study. BJOG 119:739–751

    PubMed  CAS  Google Scholar 

  15. Björntorp P (1990) “Portal” adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis 10:493–496

    PubMed  Google Scholar 

  16. Blaise SA, Alberto JM, Audonnet-Blaise S, Guéant JL, Daval JL (2007) Influence of preconditioning-like hypoxia on the liver of develo** methyl-deficient rats. Am J Physiol Endocrinol Metab 293:E1492–E1502

    PubMed  CAS  Google Scholar 

  17. Blüher M (2010) The distinction of metabolically ‘healthy’ from ‘unhealthy’ obese individuals. Curr Opin Lipidol 21:38–43

    PubMed  Google Scholar 

  18. Boden G, Zhang M (2006) Recent findings concerning thiazolidinediones in the treatment of diabetes. Expert Opin Investig Drugs 15:243–250

    PubMed  CAS  Google Scholar 

  19. Bordone L, Cohen D, Robinson A, Motta MC, van Veen E, Czopik A, Steele AD, Crowe H, Marmor S, Luo J, Gu W, Guarente L (2007) SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6:759–767

    PubMed  CAS  Google Scholar 

  20. Bossenmeyer-Pourié C, Blaise S, Pourié G, Tomasetto C, Audonnet S, Ortiou S, Koziel V, Rio MC, Daval JL, Guéant JL, Beck B (2010) Methyl donor deficiency affects fetal programming of gastric ghrelin cell organization and function in the rat. Am J Pathol 176:270–277

    PubMed Central  PubMed  Google Scholar 

  21. Bouchard C, Tremblay A, Després JP, Nadeau A, Lupien PJ, Thériault G, Dussault J, Moorjani S, Pinault S, Fournier G (1990) The response to long-term overfeeding in identical twins. N Engl J Med 322:1477–1482

    PubMed  CAS  Google Scholar 

  22. Bouchard L, Rabasa-Lhoret R, Faraj M, Lavoie ME, Mill J, Perusse L, Vohl MC (2010) Differential epigenomic and transcriptomic responses in subcutaneous adipose tissue between low and high responders to caloric restriction. Am J Clin Nutr 91:309–320

    PubMed  CAS  Google Scholar 

  23. Bressenot A, Pooya S, Bossenmeyer-Pourie C, Gauchotte G, Germain A, Chevaux JB, Coste F, Vignaud JM, Guéant JL, Peyrin-Biroulet L (2012) Methyl donor deficiency affects small-intestinal differentiation and barrier function in rats. Br J Nutr 16:1–11

    Google Scholar 

  24. Brion MJ, Ness AR, Rogers I, Emmett P, Cribb V, Smith GD, Lawlor DA (2010) Maternal macronutrient and energy intakes in pregnancy and offspring intake at 10 y: exploring parental comparisons and prenatal effects. Am J Clin Nutr 91:748–756

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Brunaud L, Alberto JM, Ayav A, Gérard P, Namour F, Antunes L, Braun M, Bronowicki JP, Bresler L, Guéant JL (2003) Vitamin B12 is a strong determinant of low methionine synthase activity and DNA hypomethylation in gastrectomized rats. Digestion 68:133–140

    PubMed  CAS  Google Scholar 

  26. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015

    PubMed  CAS  Google Scholar 

  27. Burdge GC, Slater-Jefferies J, Torrens C, Phillips ES, Hanson MA, Lillycrop KA (2007) Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr 97:435–439

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Burdge GC, Lillycrop KA, Phillips ES, Slater-Jefferies JL, Jackson AA, Hanson MA (2009) Folic acid supplementation during the juvenile–pubertal period in rats modifies the phenotype and epigenotype induced by prenatal nutrition. J Nutr 139:1054–1060

    PubMed  CAS  Google Scholar 

  29. Burdge GC, Lillycrop KA (2010) Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease. Annu Rev Nutr 30:315–339

    PubMed  CAS  Google Scholar 

  30. Burgmaier M, Sen S, Philip F, Wilson CR, Miller CC 3rd, Young ME, Taegtmeyer H (2010) Metabolic adaptation follows contractile dysfunction in the heart of obese Zucker rats fed a high-fat “Western” diet. Obes (Silver Spring) 18:1895–1901

    CAS  Google Scholar 

  31. Campion J, Milagro FI, Martinez JA (2009) Individuality and epigenetics in obesity. Obes Rev 10:383–392

    PubMed  CAS  Google Scholar 

  32. Cantó C, Auwerx J (2009) PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 20:98–105

    PubMed Central  PubMed  Google Scholar 

  33. Cantó C, Auwerx J (2011) Calorie restriction: is AMPK a key sensor and effector? Physiology (Bethesda) 26:214–224

    Google Scholar 

  34. Cantó C, Auwerx J (2012) Targeting sirtuin 1 to improve metabolism: all you need is NAD(+)? Pharmacol Rev 64:166–187

    PubMed Central  PubMed  Google Scholar 

  35. Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, Bock C, Li C, Gu H, Zamore PD, Meissner A, Weng Z, Hofmann HA, Friedman N, Rando OJ (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143:1084–1096

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Chang GQ, Gaysinskaya V, Karatayev O, Leibowitz SF (2008) Maternal high-fat diet and fetal programming: increased proliferation of hypothalamic peptide-producing neurons that increase risk for overeating and obesity. J Neurosci 28:12107–12119

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Chen H, Simar D, Lambert K, Mercier J, Morris MJ (2008) Maternal and postnatal overnutrition differentially impact appetite regulators and fuel metabolism. Endocrinology 149:5348–5356

    PubMed  CAS  Google Scholar 

  38. Christensen B, Rosenblatt DS (1995) Effects of folate deficiency on embryonic development. Baillieres Clin Haematol 8:617–637

    PubMed  CAS  Google Scholar 

  39. Coste A, Louet JF, Lagouge M, Lerin C, Antal MC, Meziane H, Schoonjans K, Puigserver P, O’Malley BW, Auwerx J (2008) The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1{alpha}. Proc Natl Acad Sci U S A 105:17187–17192

    PubMed Central  PubMed  CAS  Google Scholar 

  40. Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC, Seeley RJ (2006) Hypothalamic mTOR signaling regulates food intake. Science 312:927–930

    PubMed  CAS  Google Scholar 

  41. Coupé B, Amarger V, Grit I, Benani A, Parnet P (2010) Nutritional programming affects hypothalamic organization and early response to leptin. Endocrinology 151:702–713

    PubMed  Google Scholar 

  42. Danforth E (2000) Failure of adipocyte differentiation causes type II diabetes mellitus? Nat Genet 26:13

    PubMed  CAS  Google Scholar 

  43. Davie JR (2003) Inhibition of histone deacetylase activity by butyrate. J Nutr 133:2485S–2493S

    PubMed  CAS  Google Scholar 

  44. Desai M, Gayle D, Babu J, Ross MG (2007) The timing of nutrient restriction during rat pregnancy/lactation alters metabolic syndrome phenotype. Am J Obstet Gynecol 196(555):e1–e7

    Google Scholar 

  45. Dirkx E, Schwenk RW, Glatz JF, Luiken JJ, van Eys G (2011) High fat diet induced diabetic cardiomyopathy. Prostaglandins Leukot Essent Fat Acids 85:219–225

    CAS  Google Scholar 

  46. Dolinoy DC, Das R, Weidman JR, Jirtle RL (2007) Metastable epialleles, imprinting, and the fetal origins of adult diseases. Pediatr Res 61:30R–37R

    PubMed  Google Scholar 

  47. Dominguez-Salas P, Moore SE, Cole D, da Costa KA, Cox SE, Dyer RA, Fulford AJ, Innis SM, Waterland RA, Zeisel SH, Prentice AM, Hennig BJ (2013) DNA methylation potential: dietary intake and blood concentrations of one-carbon metabolites and cofactors in rural African women. Am J Clin Nutr 97:1217–1227

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Drong AW, Lindgren CM, McCarthy MI (2012) The genetic and epigenetic basis of type 2 diabetes and obesity. Clin Pharmacol Ther 92:707–715

    PubMed  CAS  Google Scholar 

  49. Dudley KJ, Sloboda DM, Connor KL, Beltrand J, Vickers MH (2011) Offspring of mothers fed a high fat diet display hepatic cell cycle inhibition and associated changes in gene expression and DNA methylation. PLoS One 6:e21662

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, Vander Heiden MG, MacKeigan JP, Finan PM, Clish CB, Murphy LO, Manning BD (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39:171–183

    PubMed Central  PubMed  Google Scholar 

  51. Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93:884S–990S

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Flamment M, Hajduch E, Ferré P, Foufelle F (2013) New insights into ER stress-induced insulin resistance. Trends Endocrinol Metab 23:381–390

    Google Scholar 

  53. Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S (2007) Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 56:1010–1003

    PubMed  CAS  Google Scholar 

  54. Fontana L, Meyer TE, Klein S, Holloszy JO (2004) Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A 101:6659–6663

    PubMed Central  PubMed  CAS  Google Scholar 

  55. Ford D (2012) Honeybees and cell lines as models of DNA methylation and aging in response to diet. Exp Gerontol 48:614–619

    PubMed  Google Scholar 

  56. Forges T, Monnier-Barbarino P, Alberto JM, Guéant-Rodriguez RM, Daval JL, Guéant JL (2007) Impact of folate and homocysteine metabolism on human reproductive health. Hum Reprod Updat 13:225–238

    CAS  Google Scholar 

  57. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suñer D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102:10604–10609

    PubMed Central  PubMed  CAS  Google Scholar 

  58. Frelut ML, Nicolas JP, Guilland JC, de Courcy GP (2011) Methylenetetrahydrofolate reductase 677 C→T polymorphism: a link between birth weight and insulin resistance in obese adolescents. Int J Pediatr Obes 6:e312–e317

    PubMed  Google Scholar 

  59. Gabory A, Attig L, Junien C (2011) Developmental programming and epigenetics. Am J Clin Nutr 94:1943S–1952S

    PubMed  CAS  Google Scholar 

  60. Gallinetti J, Harputlugil E, Mitchell JR (2013) Amino acid sensing in dietary-restriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem J 449:1–10

    PubMed Central  PubMed  CAS  Google Scholar 

  61. Garcia MM, Guéant-Rodriguez RM, Pooya S, Brachet P, Alberto JM, Jeannesson E, Maskali F, Gueguen N, Marie PY, Lacolley P, Herrmann M, Juillière Y, Malthiery Y, Guéant JL (2011) Methyl donor deficiency induces cardiomyopathy through altered methylation/acetylation of PGC-1α by PRMT1 and SIRT1. J Pathol 225:324–335

    PubMed  CAS  Google Scholar 

  62. Ghemrawi R, Pooya S, Lorentz S, Gauchotte G, Arnold C, Guéant JL, Battaglia-Hsu S (2013) Decreased vitamin B12 availability induces ER stress through impaired SIRT1-deacetylation of HSF1. Cell Death Dis 4:e553

    PubMed Central  PubMed  CAS  Google Scholar 

  63. Gietzen DW, Hao S, Anthony TG (2007) Mechanisms of food intake repression in indispensable amino acid deficiency. Annu Rev Nutr 27:63–78

    PubMed  CAS  Google Scholar 

  64. Guéant JL, Caillerez-Fofou M, Battaglia-Hsu S, Alberto JM, Freund JN, Dulluc I, Adjalla C, Maury F, Merle C, Nicolas JP, Namour F, Daval JL (2013) Molecular and cellular effects of vitamin B12 in brain, myocardium and liver through its role as co-factor of methionine synthase. Biochimie 95:1033–1040

    PubMed  Google Scholar 

  65. Guéant JL, Namour F, Guéant-Rodriguez RM, Daval JL (2013) Folate and fetal programming: a play in epigenomics? Trends Endocrinol Metab 24:279–289

    PubMed  Google Scholar 

  66. Guéant-Rodriguez RM, Juillière Y, Nippert M, Abdelmouttaleb I, Herbeth B, Aliot E, Danchin N, Guéant JL (2007) Left ventricular systolic dysfunction is an independent predictor of homocysteine in angiographically documented patients with or without coronary artery lesions. J Thromb Haemost 5:1209–1216

    PubMed  Google Scholar 

  67. Guéant-Rodriguez RM, Spada R, Pooya S, Jeannesson E, Moreno Garcia MA, Anello G, Bosco P, Elia M, Romano A, Alberto JM, Juillière Y, Guéant JL (2012) Homocysteine predicts increased NT-pro-BNP through impaired fatty acid oxidation. Int J Cardiol 167:768–775

    PubMed  Google Scholar 

  68. Gulsen M, Yesilova Z, Bagci S, Uygun A, Ozcan A, Ercin CN, Erdil A, Sanisoglu SY, Cakir E, Ates Y, Erbil MK, Karaeren N, Dagalp K (2005) Elevated plasma homocysteine concentrations as a predictor of steatohepatitis in patients with non-alcoholic fatty liver disease. J Gastroenterol Hepatol 20:1448–1455

    PubMed  CAS  Google Scholar 

  69. Guo F, Cavener DR (2007) The GCN2 eIF2alpha kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid. Cell Metab 5:103–114

    PubMed  CAS  Google Scholar 

  70. Hallows WC, Lee S, Denu JM (2006) Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci U S A 103:10230–10235

    PubMed Central  PubMed  CAS  Google Scholar 

  71. Hammer S, Snel M, Lamb HJ, Jazet IM, van der Meer RW, Pijl H, Meinders EA, Romijn JA, de Roos A, Smit JW (2008) Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases myocardial triglyceride content and improves myocardial function. J Am Coll Cardiol 52:1006–1012

    PubMed  CAS  Google Scholar 

  72. Han X, Turdi S, Hu N, Guo R, Zhang Y, Ren J (2012) Influence of long-term caloric restriction on myocardial and cardiomyocyte contractile function and autophagy in mice. J Nutr Biochem 23:1592–1599

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Hebert AS, Dittenhafer-Reed KE, Yu W, Bailey DJ, Selen ES, Boersma MD, Carson JJ, Tonelli M, Balloon AJ, Higbee AJ, Westphall MS, Pagliarini DJ, Prolla TA, Assadi-Porter F, Roy S, Denu JM, Coon JJ (2013) Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell 49:186–199

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105:17046–17049

    PubMed Central  PubMed  CAS  Google Scholar 

  75. Herb BR, Wolschin F, Hansen KD, Aryee MJ, Langmead B, Irizarry R, Amdam GV, Feinberg AP (2012) Reversible switching between epigenetic states in honeybee behavioral subcastes. Nat Neurosci 15:1371–1373

    PubMed Central  PubMed  CAS  Google Scholar 

  76. Herrmann WW et al (2007) Homocysteine, brain natriuretic peptide and chronic heart failure: a critical review. Clin Chem Lab Med 45:1633–1644

    PubMed  CAS  Google Scholar 

  77. Hirsch S, Poniachick J, Avendaño M, Csendes A, Burdiles P, Smok G, Diaz JC, de la Maza MP (2005) Serum folate and homocysteine levels in obese females with non-alcoholic fatty liver. Nutrition 21:137–141

    PubMed  CAS  Google Scholar 

  78. Hoile SP, Lillycrop KA, Grenfell LR, Hanson MA, Burdge GC (2012) Increasing the folic acid content of maternal or postweaning diets induces differential changes in phosphoenolpyruvate carboxykinase mRNA expression and promoter methylation in rats. Br J Nutr 108:852–857

    PubMed  CAS  Google Scholar 

  79. Hoile SP, Lillycrop KA, Thomas NA, Hanson MA, Burdge GC (2011) Dietary protein restriction during F0 pregnancy in rats induces transgenerational changes in the hepatic transcriptome in female offspring. PLoS One 6:e21668

    PubMed Central  PubMed  CAS  Google Scholar 

  80. Holness MJ, Caton PW, Sugden MC (2010) Acute and long-term nutrient-led modifications of gene expression: potential role of SIRT1 as a central co-ordinator of short and longer-term programming of tissue function. Nutrition 26:491–501

    PubMed  CAS  Google Scholar 

  81. Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13:225–238

    PubMed  CAS  Google Scholar 

  82. Howie GJ, Sloboda DM, Kamal T, Vickers MH (2009) Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet. J Physiol 587:905–915

    PubMed Central  PubMed  CAS  Google Scholar 

  83. Ivanova E, Chen JH, Segonds-Pichon A, Ozanne SE, Kelsey G (2012) DNA methylation at differentially methylated regions of imprinted genes is resistant to developmental programming by maternal nutrition. Epigenetics 7:1200–1210

    PubMed Central  PubMed  CAS  Google Scholar 

  84. Jakubowski H, Perla-Kaján J, Finnell RH et al (2009) Genetic or nutritional disorders in homocysteine or folate metabolism increase protein N-homocysteinylation in mice. FASEB J 23:1721–1727

    PubMed Central  PubMed  CAS  Google Scholar 

  85. Jeninga EH, Schoonjans K, Auwerx J (2010) Reversible acetylation of PGC-1: connecting energy sensors and effectors to guarantee metabolic flexibility. Oncogene 29:4617–4624

    PubMed  CAS  Google Scholar 

  86. Jensen MD, Haymond MW, Rizza RA, Cryer PE, Miles JM (1989) Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest 83:1168–1173

    PubMed Central  PubMed  CAS  Google Scholar 

  87. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG, He C (2011) N 6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7:885–887

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Jiménez-Chillarón JC, Díaz R, Martínez D, Pentinat T, Ramón-Krauel M, Ribó S, Plösch T (2012) The role of nutrition on epigenetic modifications and their implications on health. Biochimie 94:2242–2263

    PubMed  Google Scholar 

  89. Joseph J (2011) Fattening by deprivation: methyl balance and perinatal cardiomyopathy. J Pathol 225:315–317

    PubMed  CAS  Google Scholar 

  90. Jousse C, Parry L, Lambert-Langlais S, Maurin AC, Averous J, Bruhat A, Carraro V, Tost J, Letteron P, Chen P, Jockers R, Launay JM, Mallet J, Fafournoux P (2011) Perinatal undernutrition affects the methylation and expression of the leptin gene in adults: implication for the understanding of metabolic syndrome. FASEB J 25:3271–3278

    PubMed  CAS  Google Scholar 

  91. Kawakami K, Nakamura A, Goto S (2012) Dietary restriction increases site-specific histone H3 acetylation in rat liver: possible modulation by sirtuins. Biochem Biophys Res Commun 418:836–840

    PubMed  CAS  Google Scholar 

  92. Kawano Y, Cohen DE (2013) Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol 48:434–441

    PubMed Central  PubMed  CAS  Google Scholar 

  93. Kerek R, Geoffroy A, Guéant JL, Bossenmeyer-Pourié C, Daval JL (2013) Early methyl donor deficiency associated with alteration of the miR-124 and Stat3 signaling pathways impairs embryonic brain development. Cell Death Dis 4:e755

    PubMed Central  PubMed  CAS  Google Scholar 

  94. Kirchner H, Osler ME, Krook A, Zierath JR (2013) Epigenetic flexibility in metabolic regulation: disease cause and prevention? Trends Cell Biol 23:203–209

    PubMed  CAS  Google Scholar 

  95. Kojima M, Kangawa K (2005) Ghrelin: structure and function. Physiol Rev 85:495–522

    PubMed  CAS  Google Scholar 

  96. Kong AP, Xu G, Brown N, So WY, Ma RC, Chan JC (2013) Diabetes and its comorbidities—where east meets west. Nat Rev Endocrinol. doi:10.1038/nrendo.2013.102

    PubMed  Google Scholar 

  97. Koplay M, Gulcan E, Ozkan F (2011) Association between serum vitamin B12 levels and the degree of steatosis in patients with nonalcoholic fatty liver disease. J Invest Med 59:1137–1140

    CAS  Google Scholar 

  98. Kucharski R, Maleszka J, Foret S, Maleszka R (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science 319:1827–1830

    PubMed  CAS  Google Scholar 

  99. Kuehnen P, Mischke M, Wiegand S, Sers C, Horsthemke B, Lau S, Keil T, Lee YA, Grueters A, Krude H (2012) An Alu element-associated hypermethylation variant of the POMC gene is associated with childhood obesity. PLoS Genet 8:e1002543

    PubMed Central  PubMed  CAS  Google Scholar 

  100. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122

    PubMed  CAS  Google Scholar 

  101. Lebrun P, Van Obberghen E (2008) SOCS proteins causing trouble in insulin action. Acta Physiol (Oxf) 192:29–36

    CAS  Google Scholar 

  102. Lewis SJ, Lawlor DA, Nordestgaard BG, Tybjaerg-Hansen A, Ebrahim S, Zacho J, Ness A, Leary S, Smith GD (2008) The methylenetetrahydrofolate reductase C677T genotype and the risk of obesity in three large population-based cohorts. Eur J Endocrinol 159:35–40

    PubMed Central  PubMed  CAS  Google Scholar 

  103. Lewis SJ, Leary S, Davey Smith G, Ness A (2009) Body composition at age 9 years, maternal folate intake during pregnancy and methyltetrahydrofolate reductase (MTHFR) C677T genotype. Br J Nutr 102:493–496

    PubMed  CAS  Google Scholar 

  104. Li J, Huang J, Li JS, Chen H, Huang K, Zheng L (2011) Accumulation of endoplasmic reticulum stress and lipogenesis in the liver through generational effects of high fat diets. J Hepatol 56:900–907

    PubMed  Google Scholar 

  105. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135:1382–1386

    PubMed  CAS  Google Scholar 

  106. Lillycrop KA, Phillips ES, Torrens C, Hanson MA, Jackson AA, Burdge GC (2008) Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPAR alpha promoter of the offspring. Br J Nutr 100:278–282

    PubMed Central  PubMed  CAS  Google Scholar 

  107. Lillycrop KA, Slater-Jefferies JL, Hanson MA, Godfrey KM, Jackson AA, Burdge GC (2007) Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr 97:1064–1073

    PubMed Central  PubMed  CAS  Google Scholar 

  108. Lopes de Souza S, Orozco-Solis R, Grit I, Manhães de Castro R, Bolaños-Jiménez F (2008) Perinatal protein restriction reduces the inhibitory action of serotonin on food intake. Eur J Neurosci 27:1400–1408

    PubMed  Google Scholar 

  109. Lowell BB, Shulman GI (2005) Mitochondrial dysfunction and type 2 diabetes. Science 307:384–387

    Google Scholar 

  110. Lumey LH, Stein AD, Ravelli AC (1995) Timing of prenatal starvation in women and birth weight in their first and second born offspring: the Dutch Famine Birth Cohort study. Eur J Obstet Gynecol Reprod Biol 61:23–30

    PubMed  CAS  Google Scholar 

  111. Martinez E, Gérard N, Garcia MM, Mazur A, Guéant-Rodriguez RM, Comte B, Guéant JL, Brachet P (2013) Myocardium proteome remodelling after nutritional deprivation of methyl donors. J Nutr Biochem 24:1241–1250

    PubMed  CAS  Google Scholar 

  112. Martínez-Chantar ML, García-Trevijano ER, Latasa MU, Pérez-Mato I, Sánchez del Pino MM, Corrales FJ, Avila MA, Mato JM (2002) Importance of a deficiency in S-adenosyl-l-methionine synthesis in the pathogenesis of liver injury. Am J Clin Nutr 76:1177S–1182S

    PubMed  Google Scholar 

  113. Mato JM, Martínez-Chantar ML, Lu SC (2008) Methionine metabolism and liver disease. Annu Rev Nutr 28:273–293

    PubMed  CAS  Google Scholar 

  114. McGregor RA, Choi MS (2011) MicroRNAs in the regulation of adipogenesis and obesity. Curr Mol Med 11:304–316

    PubMed Central  PubMed  CAS  Google Scholar 

  115. Meigs JB, Cupples LA, Wilson PW (2000) Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes 49:2201–2207

    PubMed  CAS  Google Scholar 

  116. Menendez-Castro C, Fahlbusch F, Cordasic N, Amann K, Münzel K, Plank C, Wachtveitl R, Rascher W, Hilgers KF, Hartner A (2011) Early and late postnatal myocardial and vascular changes in a protein restriction rat model of intrauterine growth restriction. PLoS One 6:e20369

    PubMed Central  PubMed  CAS  Google Scholar 

  117. Meyer TE, Kovacs SJ, Ehsani AA, Klein S, Holloszy JO, Fontana L (2006) Long-term caloric restriction ameliorates the decline in diastolic function in humans. J Am Coll Cardiol 47:398–402

    PubMed  CAS  Google Scholar 

  118. Milagro FI, Campion J, Cordero P, Goyenechea E, Gomez-Uriz AM, Abete I, Zulet MA, Martinez JA (2011) A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss. FASEB J 25:1378–1389

    PubMed  CAS  Google Scholar 

  119. Milagro FI, Campión J, García-Díaz DF, Goyenechea E, Paternain L, Martínez JA (2009) High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats. J Physiol Biochem 65:1–9

    PubMed  CAS  Google Scholar 

  120. Miller BF, Robinson MM, Bruss MD, Hellerstein M, Hamilton KL (2012) A comprehensive assessment of mitochondrial protein synthesis and cellular proliferation with age and caloric restriction. Aging Cell 11:150–161

    PubMed Central  PubMed  CAS  Google Scholar 

  121. Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M (2005) Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4:119–125

    PubMed  CAS  Google Scholar 

  122. Milne JC, Lambert PD, Schenk S et al (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450:712–716

    PubMed Central  PubMed  CAS  Google Scholar 

  123. Skinner MK (2010) Metabolic disorders: fathers’ nutritional legacy. Nature 467:922–923

    Google Scholar 

  124. Muhlhausler BS, Adam CL, Findlay PA, Duffield JA, McMillen IC (2006) Increased maternal nutrition alters development of the appetite-regulating network in the brain. FASEB J 20:1257–1259

    PubMed  CAS  Google Scholar 

  125. Mutti NS, Wang Y, Kaftanoglu O, Amdam GV (2011) Honey bee PTEN—description, developmental knockdown, and tissue-specific expression of splice-variants correlated with alternative social phenotypes. PLoS One 6:e22195

    PubMed Central  PubMed  CAS  Google Scholar 

  126. Nijland MJ, Mitsuya K, Li C, Ford S, McDonald TJ, Nathanielsz PW, Cox LA (2010) Epigenetic modification of fetal baboon hepatic phosphoenolpyruvate carboxykinase following exposure to moderately reduced nutrient availability. J Physiol 588:1349–1359

    PubMed Central  PubMed  CAS  Google Scholar 

  127. Nisoli E, Clementi E, Carruba MO, Moncada S (2007) Defective mitochondrial biogenesis: a hallmark of the high cardiovascular risk in the metabolic syndrome? Circ Res 100:795–806

    PubMed  CAS  Google Scholar 

  128. Orozco-Solís R, Matos RJ, Guzmán-Quevedo O, Lopes de Souza S, Bihouée A, Houlgatte R, Manhães de Castro R, Bolaños-Jiménez F (2010) Nutritional programming in the rat is linked to long-lasting changes in nutrient sensing and energy homeostasis in the hypothalamus. PLoS One 5:e13537

    PubMed Central  PubMed  Google Scholar 

  129. Ouwens DM, Diamant M, Fodor M, Habets DD, Pelsers MM, El HM, Dang ZC, van den Brom CE, Vlasblom R, Rietdijk A, Boer C, Coort SL, Glatz JF, Luiken JJ (2007) Cardiac contractile dysfunction in insulin-resistant rats fed a high-fat diet is associated with elevated CD36-mediated fatty acid uptake and esterification. Diabetologia 50:1938–1948

    PubMed Central  PubMed  CAS  Google Scholar 

  130. Palou M, Priego T, Sánchez J, Palou A, Picó C (2012) Metabolic programming of sirtuin 1 (SIRT1) expression by moderate energy restriction during gestation in rats may be related to obesity susceptibility in later life. Br J Nutr 28:1–8

    Google Scholar 

  131. Parrado-Fernández C, López-Lluch G, Rodríguez-Bies E, Santa-Cruz S, Navas P, Ramsey JJ, Villalba JM (2011) Calorie restriction modifies ubiquinone and COQ transcript levels in mouse tissues. Free Radic Biol Med 50:1728–1736

    PubMed  Google Scholar 

  132. Pellanda H, Forges T, Bressenot A, Chango A, Bronowicki JP, Guéant JL, Namour F (2012) Fumonisin FB1 treatment acts synergistically with methyl donor deficiency during rat pregnancy to produce alterations of H3- and H4-histone methylation patterns in fetuses. Mol Nutr Food Res 56:976–985

    PubMed  CAS  Google Scholar 

  133. Perrone CE, Mattocks DA, Hristopoulos G, Plummer JD, Krajcik RA, Orentreich N (2008) Methionine restriction effects on 11-HSD1 activity and lipogenic/lipolytic balance in F344 rat adipose tissue. J Lipid Res 49:12–23

    PubMed  CAS  Google Scholar 

  134. Peters JM, Hennuyer N, Staels B, Fruchart JC, Fievet C, Gonzalez FJ, Auwerx J (1997) Alterations in lipoprotein metabolism in peroxisome proliferator-activated receptor alpha-deficient mice. J Biol Chem 272:27307–27312

    PubMed  CAS  Google Scholar 

  135. Petrik J, Reusens B, Arany E, Remacle C, Coelho C, Hoet JJ, Hill DJ (1999) A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat and is associated with a reduced pancreatic expression of insulin-like growth factor-II. Endocrinology 140:4861–4873

    PubMed  CAS  Google Scholar 

  136. Plagemann A, Harder T, Brunn M, Harder A, Roepke K, Wittrock-Staar M, Ziska T, Schellong K, Rodekamp E, Melchior K, Dudenhausen JW (2009) Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. J Physiol 587:4963–4976

    PubMed Central  PubMed  CAS  Google Scholar 

  137. Plagemann A, Roepke K, Harder T, Brunn M, Harder A, Wittrock-Staar M, Ziska T, Schellong K, Rodekamp E, Melchior K, Dudenhausen JW (2010) Epigenetic malprogramming of the insulin receptor promoter due to developmental overfeeding. J Perinat Med 38:393–400

    PubMed  CAS  Google Scholar 

  138. Pogribny IP, Tryndyak VP, Bagnyukova TV, Melnyk S, Montgomery B, Ross SA, Latendresse JR, Rusyn I, Beland FA (2009) Hepatic epigenetic phenotype predetermines individual susceptibility to hepatic steatosis in mice fed a lipogenic methyl-deficient diet. J Hepatol 51:176–186

    PubMed Central  PubMed  CAS  Google Scholar 

  139. Pooya S, Blaise S, Moreno Garcia M, Giudicelli J, Alberto JM, Guéant-Rodriguez RM, Jeannesson E, Gueguen N, Bressenot A, Nicolas B, Malthiery Y, Daval JL, Peyrin-Biroulet L, Bronowicki JP, Guéant JL (2012) Methyl donor deficiency impairs fatty acid oxidation through PGC-1α hypomethylation and decreased ER-α, ERR-α, and HNF-4α in the rat liver. J Hepatol 57:344–351

    PubMed  CAS  Google Scholar 

  140. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28:1057–1068

    PubMed  CAS  Google Scholar 

  141. Primeau V, Coderre L, Karelis AD, Brochu M, Lavoie ME, Messier V, Sladek R, Rabasa-Lhoret R (2011) Characterizing the profile of obese patients who are metabolically healthy. Int J Obes (Lond) 35:971–981

    CAS  Google Scholar 

  142. Raychaudhuri N, Raychaudhuri S, Thamotharan M, Devaskar SU (2008) Histone code modifications repress glucose transporter 4 expression in the intrauterine growth-restricted offspring. J Biol Chem 283:13611–13626

    PubMed Central  PubMed  CAS  Google Scholar 

  143. Rees WD, Hay SM, Cruickshank M, Reusens B, Remacle C, Antipatis C, Grant G (2006) Maternal protein intake in the pregnant rat programs the insulin axis and body composition in the offspring. Metabolism 55:642–649

    PubMed  CAS  Google Scholar 

  144. ReesWD HSM, Brown DS, Antipatis C, Palmer RM (2000) Maternal protein deficiency causes hypermethylation of DNA in the livers of rat foetuses. J Nutr 130:1821–1826

    Google Scholar 

  145. Relling DP, Esberg LB, Fang CX, Johnson WT, Murphy EJ, Carlson EC, Saari JT, Ren J (2006) High-fat diet-induced juvenile obesity leads to cardiomyocyte dysfunction and upregulation of Foxo3a transcription factor independent of lipotoxicity and apoptosis. J Hypertens 24:549–561

    PubMed  CAS  Google Scholar 

  146. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118

    PubMed  CAS  Google Scholar 

  147. Roseboom T, de Rooij S, Painter R (2006) The Dutch famine and its long-term consequences for adult health. Early Hum Dev 82:485–491

    PubMed  Google Scholar 

  148. Roseboom TJ, van der Meulen JH, Osmond C, Barker DJ, Ravelli AC, Schroeder-Tanka JM, van Montfrans GA, Michels RP, Bleker OP (2000) Coronary heart disease after prenatal exposure to the Dutch famine, 1944–1945. Heart 84:595–598

    PubMed Central  PubMed  CAS  Google Scholar 

  149. Russo GT, Di Benedetto A, Alessi E, Ientile R, Antico A, Nicocia G, La Scala R, Di Cesare E, Raimondo G, Cucinotta D (2006) Mild hyperhomocysteinemia and the common C677T polymorphism of methylene tetrahydrofolate reductase gene are not associated with the metabolic syndrome in type 2 diabetes. J Endocrinol Investig 29:201–207

    CAS  Google Scholar 

  150. Russo P, Doyon J, Sonsino E, Ogier H, Saudubray JM (1992) A congenital anomaly of vitamin B12 metabolism: a study of three cases. Hum Pathol 23:504–512

    PubMed  CAS  Google Scholar 

  151. Sack MN (2011) Caloric excess or restriction mediated modulation of metabolic enzyme acetylation-proposed effects on cardiac growth and function. Biochim Biophys Acta 1813:1279–1285

    PubMed Central  PubMed  CAS  Google Scholar 

  152. Sinclair KD, Allegrucci C, Singh R, Gardner DS, Sebastian S, Bispham J, Thurston A, Huntley JF, Rees WD, Maloney CA, Lea RG, Craigon J, McEvoy TG, Young LE (2007) DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci U S A 104:19351–19356

    PubMed Central  PubMed  CAS  Google Scholar 

  153. Slater-Jefferies JL, Lillycrop KA, Townsend PA, Torrens C, Hoile SP, Hanson MA, Burdge GC (2011) Feeding a protein-restricted diet during pregnancy induces altered epigenetic regulation of peroxisomal proliferator-activated receptor-α in the heart of the offspring. J Dev Orig Health Dis 2:250–255

    PubMed Central  PubMed  CAS  Google Scholar 

  154. Sohi G, Marchand K, Revesz A, Arany E, Hardy DB (2011) Maternal protein restriction elevates cholesterol in adult rat offspring due to repressive changes in histone modifications at the cholesterol 7alpha-hydroxylase promoter. Mol Endocrinol 25:785–798

    PubMed  CAS  Google Scholar 

  155. Speakman JR, Mitchell SE (2011) Caloric restriction. Mol Aspects Med 32:159–221

    PubMed  CAS  Google Scholar 

  156. Stewart CP et al (2011) Low maternal vitamin B-12 status is associated with offspring insulin resistance regardless of antenatal micronutrient. J Nutr 141:1912–1917

    PubMed  CAS  Google Scholar 

  157. Stover PJ (2011) Polymorphisms in 1-carbon metabolism, epigenetics and folate-related pathologies. J Nutrigenet Nutrigenomics 4:293–305

    PubMed  CAS  Google Scholar 

  158. Sun Z, Singh N, Mullican SE, Everett LJ, Li L, Yuan L, Liu X, Epstein JA, Lazar MA (2011) Diet-induced lethality due to deletion of the Hdac3 gene in heart and skeletal muscle. J Biol Chem 286:33301–33339

    PubMed Central  PubMed  CAS  Google Scholar 

  159. Suter MA, Chen A, Burdine MS, Choudhury M, Harris RA, Lane RH, Friedman JE, Grove KL, Tackett AJ, Aagaard KM (2012) A maternal high-fat diet modulates fetal SIRT1 histone and protein deacetylase activity in nonhuman primates. FASEB J 26:5106–1514

    PubMed Central  PubMed  CAS  Google Scholar 

  160. Sykora P, Kharbanda KK, Crumm SE, Cahill A (2009) S-adenosyl-l-methionine co-administration prevents the ethanol-elicited dissociation of hepatic mitochondrial ribosomes in male rats. Alcohol Clin Exp Res 33:1–9

    PubMed Central  PubMed  CAS  Google Scholar 

  161. Tabassum R, Jaiswal A, Chauhan G, Dwivedi OP, Ghosh S, Marwaha RK, Tandon N, Bharadwaj D (2012) Genetic variant of AMD1 is associated with obesity in urban Indian children. PLoS One 7:e33162

    PubMed Central  PubMed  CAS  Google Scholar 

  162. Taksali SE, Caprio S, Dziura J, Dufour S, Calí AM, Goodman TR, Papademetris X, Burgert TS, Pierpont BM, Savoye M, Shaw M, Seyal AA, Weiss R (2008) High visceral and low abdominal subcutaneous fat stores in the obese adolescent: a determinant of an adverse metabolic phenotype. Diabetes 57:367–371

    PubMed  CAS  Google Scholar 

  163. Tarry-Adkins JL, Chen JH, Jones RH, Smith NH, Ozanne SE (2010) Poor maternal nutrition leads to alterations in oxidative stress, antioxidant defense capacity, and markers of fibrosis in rat islets: potential underlying mechanisms for development of the diabetic phenotype in later life. FASEB J 24:2762–2771

    PubMed  CAS  Google Scholar 

  164. Tateishi K, Okada Y, Kallin EM, Zhang Y (2009) Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 458:757–761

    PubMed  CAS  Google Scholar 

  165. Teperino R, Schoonjans K, Auwerx J (2010) Histone methyl transferases and demethylases; can they link metabolism and transcription? Cell Metab 12:321–327

    PubMed Central  PubMed  CAS  Google Scholar 

  166. Timmermans S, Jaddoe VW, Hofman A, Steegers-Theunissen RP, Steegers EA (2009) Periconception folic acid supplementation, fetal growth and the risks of low birth weight and preterm birth: the Generation R Study. Br J Nutr 102:777–785

    PubMed  CAS  Google Scholar 

  167. Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, Slagboom PE, Heijmans BT (2009) DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18:4046–4053

    PubMed Central  PubMed  CAS  Google Scholar 

  168. Tryndyak V, de Conti A, Kobets T, Kutanzi K, Koturbash I, Han T, Fuscoe JC, Latendresse JR, Melnyk S, Shymonyak S, Collins L, Ross SA, Rusyn I, Beland FA, Pogribny IP (2012) Interstrain differences in the severity of liver injury induced by a choline- and folate-deficient diet in mice are associated with dysregulation of genes involved in lipid metabolism. FASEB J 26:4592–4602. doi:10.1096/fj.12-209569

    PubMed Central  PubMed  CAS  Google Scholar 

  169. Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–816

    PubMed  CAS  Google Scholar 

  170. Vaiman D, Gascoin-Lachambre G, Boubred F, Mondon F, Feuerstein JM, Ligi I, Grandvuillemin I, Barbaux S, Ghigo E, Achard V, Simeoni U, Buffat C (2011) The intensity of IUGR-induced transcriptome deregulations is inversely correlated with the onset of organ function in a rat model. PLoS One 6:e21222

    PubMed Central  PubMed  CAS  Google Scholar 

  171. Ventura-Clapier R, Garnier A, Veksler V (2008) Transcriptional control of mitochondrial biogenesis: the central role of PGC-1α. Cardiovasc Res 79:208–217

    PubMed  CAS  Google Scholar 

  172. Verwey M, Amir S (2011) Nucleus-specific effects of meal duration on daily profiles of PERIOD1 and PERIOD2 protein expression in rats housed under restricted feeding. Neuroscience 192:304–311

    PubMed  CAS  Google Scholar 

  173. Vucetic Z, Kimmel J, Totoki K, Hollenbeck E, Reyes TM (2010) Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology 151:4756–4764

    PubMed Central  PubMed  CAS  Google Scholar 

  174. Wang J, Wu Z, Li D, Li N, Dindot SV, Satterfield MC, Bazer FW, Wu G (2012) Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal 17:282–301

    PubMed Central  PubMed  CAS  Google Scholar 

  175. Wang Y, Lobstein T (2006) Worldwide trends in childhood overweight and obesity. Int J Pediatr Obes 1:11–25

    PubMed  Google Scholar 

  176. Watanabe K, Fujii H, Takahashi T, Kodama M, Aizawa Y, Ohta Y, Ono T, Hasegawa G, Naito M, Nakajima T, Kamijo Y, Gonzalez FJ, Aoyama T (2000) Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor alpha associated with age-dependent cardiac toxicity. J Biol Chem 275:22293–22299

    PubMed  CAS  Google Scholar 

  177. Waterland RA, Kellermayer R, Laritsky E, Rayco-Solon P, Harris RA, Travisano M, Zhang W, Torskaya MS, Zhang J, Shen L, Manary MJ, Prentice AM (2010) Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet 6:e1001252

    PubMed Central  PubMed  CAS  Google Scholar 

  178. Weltman MD, Farrell GC, Liddle C (1996) Increased hepatocyte CYP2E1 expression in a rat nutritional model of hepatic steatosis with inflammation. Gastroenterology 111:1645–1653

    PubMed  CAS  Google Scholar 

  179. Wolfe D, Gong M, Han G, Magee TR, Ross MG, Desai M (2012) Nutrient sensor-mediated programmed non-alcoholic fatty liver disease in low birth weight offspring. Am J Obstet Gynecol 207:308.e1–308.e6

    Google Scholar 

  180. **ao F, Huang Z, Li H, Yu J, Wang C, Chen S, Meng Q, Cheng Y, Gao X, Li J, Liu Y, Guo F (2011) Leucine deprivation increases hepatic insulin sensitivity via GCN2/mTOR/S6K1 and AMPK pathways. Diabetes 60:746–756

    PubMed Central  PubMed  CAS  Google Scholar 

  181. Yajnik CS, Deshpande SS, Jackson AA, Refsum H, Rao S, Fisher DJ, Bhat DS, Naik SS, Coyaji KJ, Joglekar CV, Joshi N, Lubree HG, Deshpande VU, Rege SS, Fall CH (2008) Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia 51:29–38

    PubMed Central  PubMed  CAS  Google Scholar 

  182. Yajnik CS, Deshmukh US (2012) Fetal programming: maternal nutrition and role of one-carbon metabolism. Rev Endocrinol Metab Disord 13:121–127

    CAS  Google Scholar 

  183. Yamamoto T, Sadoshima J (2011) Protection of the heart against ischemia/reperfusion by silent information regulator 1. Trends Cardiovasc Med 21:27–32

    PubMed Central  PubMed  CAS  Google Scholar 

  184. Yang J, Loos RJ, Powell JE, Medland SE, Speliotes EK, Chasman DI, Rose LM, Thorleifsson G, Steinthorsdottir V, Mägi R et al (2012) FTO genotype is associated with phenotypic variability of body mass index. Nature 490:267–272

    PubMed Central  PubMed  CAS  Google Scholar 

  185. Yu J, Auwerx J (2010) Protein deacetylation by SIRT1: an emerging key post-translational modification in metabolic regulation. Pharmacol Res 62:35–41

    PubMed Central  PubMed  CAS  Google Scholar 

  186. Zhang J, Zhang F, Didelot X, Bruce KD, Cagampang FR, Vatish M, Hanson M, Lehnert H, Ceriello A, Byrne CD (2009) Maternal high fat diet during pregnancy and lactation alters hepatic expression of insulin like growth factor-2 and key microRNAs in the adult offspring. BMC Genomics 10:478

    PubMed Central  PubMed  Google Scholar 

  187. Zhang Y, Yuan M, Bradley KM, Dong F, Anversa P, Ren J (2012) Insulin-like growth factor 1 alleviates high-fat diet-induced myocardial contractile dysfunction: role of insulin signaling and mitochondrial function. Hypertension 59:680–693

    PubMed Central  PubMed  CAS  Google Scholar 

  188. Zhao JY, Yang XY, Gong XH, Gu ZY, Duan WY, Wang J, Ye ZZ, Shen HB, Shi KH, Hou J, Huang GY, ** L, Qiao B, Wang HY (2012) Functional variant in methionine synthase reductase intron-1 significantly increases the risk of congenital heart disease in the Han Chinese population. Circulation 125:482–490

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Guéant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guéant, JL., Elakoum, R., Ziegler, O. et al. Nutritional models of foetal programming and nutrigenomic and epigenomic dysregulations of fatty acid metabolism in the liver and heart. Pflugers Arch - Eur J Physiol 466, 833–850 (2014). https://doi.org/10.1007/s00424-013-1339-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1339-4

Keywords

Navigation