Log in

Oxidative damage is present in plasma and circulating neutrophils 4 weeks after a high mountain expedition

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

It is well known that exposure to extreme environments, such as in high-mountain expeditions, is associated with increased production of reactive oxygen species and related oxidative damage. However, there is little information concerning antioxidant recovery after this type of expedition. Thus, the aim of this study is to analyze the antioxidant recovery status at sea level of five expert alpinists 4 weeks after climbing Cho-Oyu (8,201 m). Body composition, cardiorespiratory capacity, and circulating parameters were almost similar to the values obtained at the beginning of the study. However, the alpinists presented high erythrocyte number, related hemogram values, and ferritin. Sodium, alkaline phosphatase, and γ-glutamyltransferase plasma levels were lower. Concerning oxidative stress, plasma uric acid levels were significantly increased, as well as malondialdehyde and protein carbonyls. Neutrophils displayed significantly higher levels of malondialdehyde and lower catalase activity. Therefore, these data indicate that the oxidative stress during a high mountain expedition is the most probable cause to explain an incomplete recovery in plasma and neutrophil antioxidant status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Baillie JK, Bates MGD, Thompson AAR, Waring WS, Partridge RW, Simpson A, Maxwell SRJ (2007) Endogenous urate production augments plasma antioxidant capacity in healthy lowland subjects exposed to high altitude. Chest 131:1473–1478

    Article  PubMed  CAS  Google Scholar 

  • Bärtsch P, Saltin B (2008) General introduction to altitude adaptation and mountain sickness. Scand J Med Sci Sports 18(Suppl 1):1–10

    Article  PubMed  Google Scholar 

  • Bowers LD, Wong ET (1980) Kinetic serum creatinine assays. II. A critical evaluation and review. Clin Chem 26:555–561

    PubMed  CAS  Google Scholar 

  • Boyum A (1964) Separation of white blood cells. Nature 204:793–794

    Article  PubMed  CAS  Google Scholar 

  • Bucolo G, David H (1973) Quantitative determination of serum triglycerides by the use of enzymes. Clin Chem 19:476–482

    PubMed  CAS  Google Scholar 

  • Dosek A, Ohno H, Acs Z, Taylor AW, Radak Z (2007) High altitude and oxidative stress. Resp Physiol Neurobiol 158:128–131

    Article  CAS  Google Scholar 

  • Drust B, Waterhouse J (2010) Exercise and altitude. Scott Med J 55:31–34

    Article  PubMed  CAS  Google Scholar 

  • Edwards NL (2009) The role of hyperuricemia in vascular disorders. Curr Opin Rheumatol 21:132–137

    Article  PubMed  Google Scholar 

  • Faulkner JA (1968) Physiology of swimming and diving. In: Falls H (ed) Exercise physiology. Academic Press, Baltimore, pp 415–445

    Google Scholar 

  • Flohé L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  PubMed  Google Scholar 

  • Fossati P, Prencipe L, Berti G (1980) Use of 3, 5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin Chem 26:227–231

    PubMed  CAS  Google Scholar 

  • Goldberg DM, Spooner RJ (1983) Glutathione reductase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Basel, pp 258–265

  • Heinicke I, Boehler A, Rechsteiner T, Bogdanova A, Jelkmann W, Hofer M, Rawlings P, Araneda OF, Behn C, Gassmann M, Heinicke K (2009) Moderate altitude but not additional endurance training increases markers of oxidative stress in exhaled breath condensate. Eur J Appl Physiol 106:599–604

    Article  PubMed  CAS  Google Scholar 

  • Hovind P, Rossing P, Johnson RJ, Parving HH (2011) Serum uric acid as a new player in the development of diabetic nephropathy. J Ren Nutr 21:124–127

    Article  PubMed  CAS  Google Scholar 

  • Ilavazhagan G, Bansal A, Prasad D, Thomas P, Sharma SK, Kain AK, Kumar D, Selvamurthy W (2001) Effect of vitamin E supplementation on hypoxia-induced oxidative damage in male albino rats. Aviat Space Environ Med 72:899–903

    PubMed  CAS  Google Scholar 

  • Imai H, Kashiwazaki H, Suzuki T, Kabuto M, Himeno S, Watanabe C, Moji K, Kim SW, Rivera JO, Takemoto T (1995) Selenium levels and glutathione peroxidase activities in blood in an Andean high-altitude population. J Nutr Sci Vitaminol (Tokyo) 41:349–361

    Article  CAS  Google Scholar 

  • Itano M (1978) CAP comprehensive chemistry. Serum iron survey. Am J Clin Pathol 70:516–522

    PubMed  CAS  Google Scholar 

  • Joanny P, Steinberg J, Robach P, Richalet JP, Gortan C, Gardette B, Jammes Y (2001) Operation Everest III (Comex’97): the effect of simulated sever hypobaric hypoxia on lipid peroxidation and antioxidant defence systems in human blood at rest and after maximal exercise. Resuscitation 49:307–314

    Article  PubMed  CAS  Google Scholar 

  • Khan S, O’Brien PJ (1995) Modulating hypoxia-induced hepatocyte injury by affecting intracellular redox state. Biochim Biophys Acta 1269:153–161

    Article  PubMed  Google Scholar 

  • Laporta O, Funes L, Garzon MT, Villalain J, Micol V (2007) Role of membranes on the antibacterial and anti-Inflammatory activities of the bioactive compounds from Hypoxis rooperi corm extract. Arch Biochem Biophys 467:119–131

    Article  PubMed  CAS  Google Scholar 

  • Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    Article  PubMed  CAS  Google Scholar 

  • Marfell-Jones M, Olds T, Steward A, Carter L (2006) International standards for anthropometric assessment. ISAK, Potchefstroom

    Google Scholar 

  • Martarelli D, Cocchioni M, Scuri S, Spataro A, Pompei P (2011) Cold exposure increases exercise-induced oxidative stress. J Sports Med Phys Fitness 51:299–304

    PubMed  CAS  Google Scholar 

  • Martin AD, Daniel M, Clarys JP, Marfell-Jones MJ (2003) Cadaver-assessed validity of anthropometric indicators of adipose tissue distribution. Int J Obes Relat Metab Disord 27:1052–1058

    Article  PubMed  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  • Mohanraj P, Merola AJ, Wright VP, Clanton TL (1998) Antioxidants protect rat diaphragmatic muscle function under hypoxic conditions. J Appl Physiol 84:1960–1966

    PubMed  CAS  Google Scholar 

  • Naito HK, David JA (1984) Laboratory considerations: determination of cholesterol, triglyceride, phospholipid, and other lipids in blood and tissues. Lab Res Methods Biol Med 10:1–76

    PubMed  CAS  Google Scholar 

  • Nakanishi K, Tajima F, Nakamura A, Yagura S, Ookawara T, Yamashita H, Suzuki K, Taniguchi N, Ohno H (1995) Antioxidant system in hypobaric-hypoxia. J Physiol 489:869–876

    PubMed  CAS  Google Scholar 

  • Nikolaidis MG, Jamurtas AZ (2009) Blood as a reactive species generator and redox status regulator during exercise. Arch Biochem Biophys 490:77–84

    Article  PubMed  CAS  Google Scholar 

  • Olsen NV (1995) Effect of hypoxaemia on water and sodium homeostatic hormones and renal function. Acta Anaesthesiol Scand Suppl 107:165–170

    Article  PubMed  CAS  Google Scholar 

  • Pialoux V, Mounier R, Brown AD, Steinback CD, Rawling JM, Poulin MJ (2009) Relationship between oxidative stress and HIF-1 alpha mRNA during sustained hypoxia in humans. Free Radic Biol Med 46:321–326

    Article  PubMed  CAS  Google Scholar 

  • Pialoux V, Brugniaux JV, Rock E, Mazur A, Schmitt L, Richalet JP, Robach P, Clottes E, Coudert J, Fellmann N, Mounier R (2010) Antioxidant status of elite athletes remains impaired 2 weeks after a simulated altitude training camp. Eur J Nutr 49:285–292

    Article  PubMed  CAS  Google Scholar 

  • Prentice AM, Jebb SA (2001) Beyond body mass index. Ob Rev 2:141–147

    Article  CAS  Google Scholar 

  • Radak Z, Lee K, Choi W, Sunoo S, Kizaki T, Oh-Ishi S, Suzuki K, Taniguchi N, Ohno H, Asano K (1994) Oxidative stress induced by intermittent exposure at a simulated altitude of 4000 m decreases mitochondrial superoxide dismutase content in soleus muscle of rats. Eur J Appl Physiol Occup Physiol 69:392–395

    Article  PubMed  CAS  Google Scholar 

  • Smith EU, Diaz-Tomé C, Pérez-Ruiz F, March LM (2010) Epidemiology of gout: an update. Best Pract Res Clin Rheumatol 24:811–827

    Article  PubMed  CAS  Google Scholar 

  • Tabacco A, Meiattini F, Moda E, Tarli P (1979) Simplified enzymic/colorimetric serum urea nitrogen determination. Clin Chem 25:336–337

    PubMed  CAS  Google Scholar 

  • Tauler P, Aguilo A, Gimeno I, Fuentespina E, Tur JA, Pons A (2003) Influence of vitamin C diet supplementation on endogenous antioxidant defences during exhaustive exercise. Pflugers Arch 446:658–664

    Article  PubMed  CAS  Google Scholar 

  • Trinder P (1969) Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol 22:158–161

    Article  PubMed  CAS  Google Scholar 

  • Vij AG, Dutta R, Satija NK (2005) Acclimatization to oxidative stress at high altitude. High Alt Med Biol 6:301–310

    Article  PubMed  CAS  Google Scholar 

  • Weisshaar D, Gossrau E, Faderl B (1975) Normal ranges of alpha-HBDH, LDH, AP, and LAP as measured with substrate-optimated test charges. Med Welt 26:387–392

    PubMed  CAS  Google Scholar 

  • Wozniak A, Drewa G, Chesy G, Rakowski A, Rozwodowska M, Olszewska D (2001) Effect of altitude training on the peroxidation and antioxidant enzymes in sportmen. Med Sci Sports Exerc 33:1109–1113

    PubMed  CAS  Google Scholar 

  • Young DS, Friedman RB (2001) Effects of disease on clinical laboratory tests. AACC Press, Washington DC

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the valuable participation of the six climbers Juan Agullo, Jose Alejo, Jaime Anton, Francisco Marcos, Jose Tari, and Jose Trasobares. The authors also thank Jose Maria Adsuar for his technical assistance in blood analysis, Dolores Perez for her assistance in exercise test and Angel Sanchez for statistical analysis. This work was supported by grants from Spanish Science and Innovation Ministry/FEDER DPS08-07033-C03-03 to AP, AGL2007-60778 to VM and Fundacion Medica Mutua Madrileña, Instituto de Salud Carlos III-FEDER (PS09/01093) and Fundacion Salud 2000-Merck Serono to ER. LC-Q and LF have been recipients of CONACYT-Mexico (ref 197139) and FPI (Spanish Science Ministry) fellowships respectively.

Conflict of interest

The authors declare that no conflicting financial interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Roche.

Additional information

Communicated by Susan A. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrera-Quintanar, L., Lopez-Fuertes, M., Climent, V. et al. Oxidative damage is present in plasma and circulating neutrophils 4 weeks after a high mountain expedition. Eur J Appl Physiol 112, 2923–2932 (2012). https://doi.org/10.1007/s00421-011-2272-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-2272-x

Keywords

Navigation