Log in

The ACTN3 genotype in soccer players in response to acute eccentric training

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Genetic factors can interfere with sporting performance. The identification of genetic predisposition of soccer players brings important information to trainers and coaches for individual training loads adjustment. Different responses to eccentric training could be observed by the genotype referred to as α-actinin-3 (ACTN3) in biomarkers of muscle damage, hormones and inflammatory responses. The aim of this study was to compare acute inflammatory responses, muscle damage and hormonal variations according to the eccentric training in soccer professional athletes with different genetic profiles of ACTN3 (XX, RX and RR). 37 soccer professional athletes (9 XX, 13 RX, 15 RR) were randomly divided into five stations associated to eccentric muscle contraction and plyometrics. Blood samples were taken from athletes pre-eccentric training, immediately after (post), 2- and 4-h post-eccentric training to determine hormone responses (cortisol and testosterone), muscle damage (CK and α-actin), and inflammatory responses (IL-6). After eccentric training, athletes XX presented higher levels for CK (4-h post), α-actin (post and 2-h post) and cortisol (post) compared to RR and RX athletes. However, RR and RX athletes presented higher levels of testosterone (post) and IL-6 (2 h post and 4 h post) compared to athletes XX. The main conclusion of this study is that professional soccer athletes homozygous to ACTN3XX gene are more susceptible to eccentric damage and present a higher catabolic state, demonstrated by metabolic, hormonal and immune responses post an eccentric training, in comparison to ACTN3RR and ACTN3RX groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersson H, Bøhn SK, Raastad T, Paulsen G, Blomhoff R, Kadi F (2010) Differences in the inflammatory plasma cytokine response following two elite female soccer games separated by a 72-h recovery. Scand J Med Sci Sports 20:740–747. doi:10.1111/j.1600-0838.2009.00989.x

    Article  PubMed  CAS  Google Scholar 

  • Ascensao A, Rebelo A, Oliveira E, Marques F, Pereira L, Magalhaes J (2008) Biochemical impact of a soccer match—analysis of oxidative stress and muscle damage markers throughout recovery. Clin Biochem 41:841–851

    Article  PubMed  CAS  Google Scholar 

  • Avloniti AA, Douda HT, Tokmakidis SP et al (2007) Acute effects of soccer training on white blood cell count in elite female players. Int J Sports Physiol Perform 2(3):239–249

    PubMed  Google Scholar 

  • Chan S, Seto JT, MacArthur DG, Yang N, North KN, Head SI (2008) A gene for speed: contractile properties of isolated whole EDL muscle from an alpha-actinin-3 knockout mouse. Am J Physiol Cell Physiol 295:C897–C904

    Article  PubMed  CAS  Google Scholar 

  • Chan S, Seto JT, Houweling PJ et al (2011) Properties of extensor digitorum longus muscle and skinned fibers from adult and aged male and female actn3 knockout mice. Muscle Nerve. doi:10.1002/mus.21778

  • Chatzinikolaou A, Fatouros IG, Gourgoulis V et al (2010) Time course of changes in performance and inflammatory responses after acute plyometric exercise. J Strength Cond Res 24(5):1389–1398

    Article  PubMed  Google Scholar 

  • Cheung K, Hume P, Maxwell L (2003) Delayed onset muscle soreness: treatment strategies and performance factors. Sports Med 33(2):145–164

    Article  PubMed  Google Scholar 

  • Clarkson PM, Hubal MJ (2002) Exercise-induced muscle damage in humans. Am J Phys Rehabil 81:52–69

    Article  Google Scholar 

  • Clarkson PM, Hoffman EP, Zambraski E et al (2005) ACTN3 and MLCK genotype associations with exertional muscle damage. J Appl Physiol 99:564–569

    Article  PubMed  CAS  Google Scholar 

  • Cordova A, Martin JF, Reyes E, Alvarez‐Mon M (2004) Protection against muscle damage in competitive sports players: the effect of the immunomodulator AM3. J Sports Sci 22:827–833

    Google Scholar 

  • Cormack SJ, Newton RU, McGuigan MR (2008) Neuromuscular and endocrine responses of elite players to an Australian rules football match. Int J Sports Physiol Perform 3:359–374

    Google Scholar 

  • Cunniffe B, Hore AJ, Whitcombe DM et al (2010) Time course of changes in immunoendocrine markers following an international rugby game. Eur J Appl Physiol 108:113–122

    Article  PubMed  Google Scholar 

  • Delmonico MJ, Kostek MA, Doldo NA et al (2007) The alfa-actinin-3 (ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women. J Gerontol Med Sci 62:206–212

    Article  Google Scholar 

  • Dovio A, Roveda E, Sciolla C et al (2010) Intense physical exercise increases systemic 11b hydroxysteroid dehydrogenase type 1 activity in healthy adult subjects. Eur J Appl Physiol 108:681–687. doi:10.1007/s00421-009-1265-5

    Article  PubMed  CAS  Google Scholar 

  • Edwards KM, Burns VE, Ring C, Carroll D (2006) Individual differences in the interleukin-6 response to maximal and submaximal exercise tasks. J Sports Sci 24(8):855–862

    Article  PubMed  Google Scholar 

  • Elloumi M, Maso F, Michaux O, Robert A, Lac G (2003) Behaviour of saliva cortisol [C], testosterone [T] and the T/C ratio during a rugby match and during the post-competition recovery days. Eur J Appl Physiol 90:23–28

    Article  PubMed  CAS  Google Scholar 

  • Engelmann M, Landgraf R, Wotjak CT (2004) The hypothalamic–neurohypophysial system regulates the hypothalamic–pituitary–adrenal axis under stress: an old concept revisited. Front Neuroendocrinol 25:132–149

    Google Scholar 

  • Febbraio MA, Pedersen BK (2002) Muscle-derived interleukin 6: mechanisms for activation and possible biological roles. FASEB J 16:1335–1347

    Article  PubMed  CAS  Google Scholar 

  • Febbraio MA, Pedersen BK (2005) Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exerc Sport Sci Rev 33(3):114–119

    Article  PubMed  Google Scholar 

  • Fischer CP (2006) Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev 12:6–33

    PubMed  Google Scholar 

  • Gleeson M (2007) Immune function in sport and exercise. J Appl Physiol 103:693–699

    Article  PubMed  CAS  Google Scholar 

  • Greig MP, Mcnaughton LR, Lovell RJ (2006) Physiological and mechanical response to soccer-speciWc intermittent activity and steady-state activity. Res Sports Med 14:29–52. doi:10.1080/15438620500528257

    Article  PubMed  Google Scholar 

  • Hackney A (2006) Exercise as a stressor to the human neuroendocrine system. Medicina (Kaunas) 42(10):788–797

    Google Scholar 

  • Ispirlidis I, Fatouros IG, Jamurtas AZ et al (2008) Time-course of changes in inflammatory and performance responses following a soccer game. Clin J Sport Med 18(5):423–431

    Article  PubMed  Google Scholar 

  • Kraemer WJ, Ratamess NA (2005) Hormonal responses and adaptations to resistance exercise and training. Sports Med 35:339–361

    Google Scholar 

  • Kraemer WJ, Spiering BA, Volek JS, Martin GJ, Howard RL, Ratamess NA, Hatfield DL, Vingren JL, Ho JY, Fragala MS, Thomas GA, French DN, Anderson JM, Hakkinen K, Maresh CM (2009) Recovery from a national collegiate athletic association division 1 football game: muscle damage and hormonal status. J Strength Cond Res 23:2–10

    Google Scholar 

  • Lek M, North KN (2010) Are biological sensors modulated by their structural scaffolds? The role of the structural muscle proteins α-actinin-2 and α-actinin-3 as modulators of biological sensors. FEBS Lett 584:2974–2980

    Article  PubMed  CAS  Google Scholar 

  • Linnemann A, van der Vena PF, Vakeel P, Albinus B et al (2010) The sarcomeric Z-disc component myopodin is a multiadapter protein that interacts with filamin and alpha-actinin. Eur J Cell Biol 89:681–692

    Article  PubMed  CAS  Google Scholar 

  • Lucia A, Gómez-Gallego F, Santiago C et al (2006) ACTN3 genotype in professional endurance cyclists. Int J Sports Med 27:880–884

    Article  PubMed  CAS  Google Scholar 

  • MacArthur DG, North KN (2004) A gene for speed? The evolution and function of α-actinin-3. BioEssays 26:786–795

    Article  PubMed  CAS  Google Scholar 

  • MacArthur DG, North KN (2005) Genes and human elite athletic performance. Hum Genet 116:331–339

    Article  PubMed  CAS  Google Scholar 

  • MacArthur DG, North KN (2007) ACTN3: a genetic influence on muscle function and athletic performance. Exerc Sport Sci Rev 35(1):30–34

    Article  PubMed  Google Scholar 

  • MacArthur DG et al (2008) An Actn3 knockout mouse provides mechanistic insights into the association between alpha-actinin-3 deficiency and human athletic performance. Hum Mol Genet 17:1076–1086

    Article  PubMed  CAS  Google Scholar 

  • MacIntyre DL, Sorichter S, Mair J, Berg A, McKenzie DC (2001) Markers of inflammation and myofibrillar proteins following eccentric exercise in humans. Eur J Appl Physiol 84:180–186

    Article  PubMed  CAS  Google Scholar 

  • Magalhães J, Rebelo A, Oliveira E, Silva JR, Marques F, Ascensão A (2010) Impact of Loughborough Intermittent Shuttle Test versus soccer match on physiological, biochemical and neuromuscle parameters. Eur J Appl Physiol 108(1):39–48

    Article  PubMed  Google Scholar 

  • Malm C, Ekblom O, Ekblom B (2004) Immune system alteration in response to two consecutive soccer games. Acta Physiol Scand 180:143–155

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Amat A, Boulaiz H, Prados J et al (2005) Release of alpha-actin into serum after skeletal muscle damage. Br J Sports Med 39:830–834

    Article  PubMed  Google Scholar 

  • Martínez-Amat A, Marchal Corrales JA, Rodriguez SF et al (2007) Role of alpha-actin in muscle damage of injured athletes in comparison with traditional markers. Br J Sports Med 41:442–446

    Article  PubMed  Google Scholar 

  • Miller AS, Dykes DD, Poleski HF (1988) A simple salting out procedure for extracting DNA from human cells. Nucleic Acids Res 16:1215

    Article  PubMed  CAS  Google Scholar 

  • Mills M, Yang N, Weinberger R et al (2001) Differential expression of the actin-binding proteins, alpha-actinin-2 and-3, in different species: implications for the evolution of functional redundancy. Hum Mol Genet 10:1335–1346

    Article  PubMed  CAS  Google Scholar 

  • Moreira A, Arsati F, de Oliveira Lima Arsati YB, da Silva DA, de Araújo VC (2009) Salivary cortisol in top-level professional soccer players. Eur J Appl Physiol 106(1):25–30

    Article  PubMed  CAS  Google Scholar 

  • Mougios M (2007) Reference intervals for serum creatine kinase in athletes. Br J Sports Med 41(10):674–678

    Article  PubMed  Google Scholar 

  • Norman B, Esbjörnsson M, Rundqvist H, Osterlund T, von Walden F, Tesch PA (2009) Strength, power, fiber types and mRNA expression in trained men and women with different ACTN3 R577X genotypes. J Appl Physiol 106:959–965

    Article  PubMed  CAS  Google Scholar 

  • North KN, Yang N, Wattanasirichaigoon D et al (1999) A common nonsense mutation results in a-actinin-3 deficiency in the general population. Nature Genet 21:353–354

    Article  PubMed  CAS  Google Scholar 

  • Ogura Y, Naito H, Kakigi R et al (2008) Alpha-actinin-3 levels increase concomitantly with fast fibers in rat soleus muscle. Biochem Biophys Res Commun 372:584–588

    Article  PubMed  CAS  Google Scholar 

  • Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406

    Article  PubMed  CAS  Google Scholar 

  • Pedersen BK, Hoffman-Goetz L (2000) Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev 80(3):1055–1081

    PubMed  CAS  Google Scholar 

  • Pedersen BK, Rohde T, Ostrowski K (1998) Recovery of the immune system after exercise. Acta Physiol Scand 162:325–332

    Article  PubMed  CAS  Google Scholar 

  • Proske U, Morgan DL (2001) Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol 537(Pt 2):333–345

    Article  PubMed  CAS  Google Scholar 

  • Quinlan KG, Seto JT, Turner N et al (2010) Alpha-actinin-3 deficiency results in reduced glycogen phosphorylase activity and altered calcium handling in skeletal muscle. Hum Mol Genet 19(7):1335–1346

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Santiago C, González-Freire M, Serratosa L et al (2008) ACTN3 genotype in professional soccer players. Br J Sports Med 42:71–73

    Article  PubMed  CAS  Google Scholar 

  • Sari-Sarraf V, Reilly T, Doran DA, Atkinson G (2007) The effects of single and repeated bouts of soccer-specific exercise on salivary IgA. Arch Oral Biol 52:526–532

    Article  PubMed  CAS  Google Scholar 

  • Scheele C, Nielsen S, Pedersen BK (2009) ROS and myokines promote muscle adaptation to exercise. Trends Endocrinol Metab 20(3):95–99

    Article  PubMed  CAS  Google Scholar 

  • Scott W, Stevens J, Binder-Macleod SA (2001) Human skeletal muscle fiber type classifications. Phys Ther 81:1810–1816

    PubMed  CAS  Google Scholar 

  • Seto JT, Lek M, Quinlan KG, Houweling PJ, Zheng XF, Garton F, Macarthur DG, Raftery JM, Garvey SM, Hauser MA, Yang N, Head SI, North KN (2011) Deficiency of α‐actinin‐3 is associated with increased susceptibility to contraction‐induced damage and skeletal muscle remodeling. Hum Mol Genet 20(15):2914–2927

    Google Scholar 

  • Spiering BA, Kraemer WJ, Anderson JM, Armstrong LE, Nindl BC, Volek JS, Ho JY, Maresh CM (2008) Resistance exercise biology: manipulation of resistance exercise programme variables determines the responses of cellular and molecular signalling pathways. Sports Med 38:527–540

    Google Scholar 

  • Sporis G, Jukic I, Milanovic L, Vucetic V (2010) Reliability and factorial validity of agility tests for soccer players. J Strength Cond Res 24(3):679–686

    Article  PubMed  Google Scholar 

  • Steenberg A, Fischer CP, Keller C et al (2003) IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab 285:E433–E437

    Google Scholar 

  • Stolen T, Chamari K, Castagna C, Wisloff U (2005) Physiology of soccer: an update. Sports Med 35(6):501–536

    Article  PubMed  Google Scholar 

  • Sunderland C, Morris JG, Nevill M (2008) A heat acclimation protocol for team sports. Br J Sports Med 42:327–333

    Article  PubMed  CAS  Google Scholar 

  • Twist C, Eston R (2005) The effects of exercise-induced muscle damage on maximal intensity intermittent exercise performance. Eur J Appl Physiol 94:652–658

    Article  PubMed  Google Scholar 

  • Uchida M, Bacurau R, Navarro F et al (2004) Alteração da relação testosterona: cortisol induzida pelo treinamento de força em mulheres. Rev Bras Med Esp 10(3):165–168

    Article  Google Scholar 

  • Vincent B, Windelinckx A, Nielens H et al (2010) Protective role of alpha-actinin-3 in the response to an acute eccentric exercise bout. J Appl Physiol 109(2):564–573

    Article  PubMed  CAS  Google Scholar 

  • Willoughby DS, McFarlin B, Bois C (2003) Interleukin-6 expression after repeated bouts of eccentric exercise. Int J Sports Med 24(1):15–21

    Article  PubMed  CAS  Google Scholar 

  • Yang N, MacArthur DG, Gulbin JP et al (2003) ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet 73:627–631

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank the athletes involved in the study, the São Sebastião laboratory for receiving our team and especially to Elias Marcilene and Luciano Cappetinne for their competence and readiness. This work was financially supported by CNPQ 301074/2008-9. 475547/2007-1 CAPES/FAPEMIG APQ-5023-5.01-07/PRONEX/CRUZEIRO ESPORTE CLUBE.

Conflict of interest

The authors have no conflict of interest to declare with regard to the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Mendonça Pimenta.

Additional information

Communicated by Håkan Westerblad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pimenta, E.M., Coelho, D.B., Cruz, I.R. et al. The ACTN3 genotype in soccer players in response to acute eccentric training. Eur J Appl Physiol 112, 1495–1503 (2012). https://doi.org/10.1007/s00421-011-2109-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-2109-7

Keywords

Navigation