Log in

Weak form quadrature element analysis of planar slender beams based on geometrically exact beam theory

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper is devoted to the modeling of planar slender beams undergoing large displacements and finite rotations. Transverse shear deformation of beams that is trivial for most slender beams is neglected in the present model, though within the framework of the geometrically exact beam theory proposed by Reissner. A weak form quadrature element formulation is proposed which is characterized by highly efficient numerical integration and differentiation, thus minimizing the number of elements as well as the total degrees-of-freedom. Several typical examples are presented to demonstrate the effectiveness of the beam model and the weak form quadrature element formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reissner E.: On one-dimensional finite-strain beam theory: the plane problem. J. Appl. Math. Phys. (ZAMP) 23, 795–804 (1972)

    Article  MATH  Google Scholar 

  2. Jelenic G., Crisfield M.A.: Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comput. Methods. Appl. Mech. Eng. 171, 141–171 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auricchio F., Carotenuto P., Reali A.: On the geometrically exact beam model: a consistent, effective and simple derivation from three-dimensional finite elasticity. Int. J. Solids Struct. 45, 4766–4781 (2008)

    Article  MATH  Google Scholar 

  4. Zupan E., Saje M., Zupan D.: The quaternion-based three-dimensional beam theory. Comput. Methods Appl. Mech. Eng. 198, 3944–3956 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Simo J.C.: A finite strain beam formulation: the three-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49, 55–70 (1985)

    Article  MATH  Google Scholar 

  6. Simo J.C., Vu-Quoc L.: A three-dimensional finite-strain rod model. Part II: computational aspects. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986)

    Article  MATH  Google Scholar 

  7. Santos H.A.F.A., Pimenta P.M., MoitinhoDe Almeida J.P.: Hybrid and multifield variational principles for geometrically exact three-dimensional beams. Int J Non-linear Mech. 45, 809–820 (2010)

    Article  Google Scholar 

  8. Češarek P., Saje M., Zupan D.: Kinematically exact curved and twisted strain-based beam. Int. J. Solids Struct. 49, 1802–1817 (2012)

    Article  Google Scholar 

  9. Saje M.: A variational principle for finite planar deformation of straight slender elastic beams. Int. J. Solids Struct. 26(8), 887–900 (1990)

    Article  MATH  Google Scholar 

  10. Gerstmayr J., Shabana A.A.: Analysis of thin beams and cables using the absolute nodal coordinate formulation. Nonlinear Dyn. 45, 109–130 (2006)

    Article  MATH  Google Scholar 

  11. Irschik H., Gerstmayr J.: A continuum mechanics based derivation of Reissner’s large-displacemnt finite-strain beam thory: the case of plane deformation of originally straight Bernoulli–Euler beams. Acta Mech. 206, 1–21 (2009)

    Article  MATH  Google Scholar 

  12. Zhao Z., Ren G.: A quaternion-based formulation of Euler–Bernoulli beam without singularity. Nonlinear Dyn. 67, 1825–1835 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhong H., Yu T.: Flexural vibration analysis of an eccentric annular Mindlin plate. Arch. Appl. Mech. 77, 185–195 (2007)

    Article  MATH  Google Scholar 

  14. Zhong H., Yu T.: A weak-form quadrature element method for plane elasticity problems. Appl. Math. Model. 33(10), 3801–3814 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhong H., Wang Y.: Weak form quadrature element analysis of Bickford beams. Eur. J. Mech. /Solids. 29(5), 851–858 (2010)

    Article  Google Scholar 

  16. Zhong H., Gao M.: Quadrature element analysis of planar frameworks. Arch. Appl. Mech. 80, 1391–1405 (2010)

    Article  Google Scholar 

  17. Zhong H., Zhang R., Yu H.: Buckling analysis of planar frameworks using the quadrature element method. Int. J. Struct. Stab. Dyn. 11(2), 363–378 (2011)

    Article  MathSciNet  Google Scholar 

  18. **ao N., Zhong H.: Nonlinear quadrature element analysis of planar frames based on geometrically exact beam theory. Int. J. Non-linear Mech. 47(5), 481–488 (2012)

    Article  Google Scholar 

  19. Striz, A.G., Chen, W.L., Bert, C.W.: High accuracy plane stress and plate elements in the quadrature element method. In: Proceedings of the 36th AIAA/ ASME/ ASCE/ AHS/ ASC957-965 (1995)

  20. Striz A.G., Chen W.L., Bert C.W.: Free vibration of plates by the high accuracy quadrature element method. J. Sound Vib. 202, 689–702 (1997)

    Article  MATH  Google Scholar 

  21. Bellman R.E., Casti J.: Differential quadrature and long term integration. J. Math. Anal. Appl. 34, 235–238 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bert C.W., Malik M.: Differential quadrature method in computational mechanics: a review. Appl. Mech. Rev. 49, 1–27 (1996)

    Article  Google Scholar 

  23. Shu C.: Differential quadrature and its application in engineering. Springer, London (2000)

    Book  MATH  Google Scholar 

  24. Crisfield M.A.: Non-linear finite element analysis of solids and structures. Wiley, New York (1991)

    Google Scholar 

  25. Love A.E.H.: A treatise on the mathematical theory of elasticity. Dover, New York (1944)

    MATH  Google Scholar 

  26. Mattiasson, K.: Numerical results from elliptic integral solutions of some elastic problems of beams and frames[R]. Publ. 79, 10 (1979). Department of Structural mechanics, Chalmers University of Technology, Goteborg

  27. Argyris J.H., Symeonides Sp.: A sequel to: nonlinear finite element analysis of elastic systems under nonconservative loading—natural formulation. Part I. Quasistatic problems. Comput. Methods Appl. Mech. Eng. 26, 373–383 (1981)

    Google Scholar 

  28. Betsch P., Steinmann P.: Frame indifferent beam finite elements based upon the geometrically exact beam theory. Int. J. Numer. Methods Eng. 54, 1775–1788 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zupan D., Saje M.: Finite element formulation of geometrically exact three-dimensional beam theories based on interpolation of strain measures. Comput. Methods Appl. Mech. Eng. 192, 5209–5248 (2003)

    Article  MathSciNet  Google Scholar 

  30. Saje M., Turk G., Kalagasidu A., Vratanar B.: A kinematically exact finite element formulation of elastic-plastic curved beams. Comput. Struct. 67, 197–214 (1998)

    Article  MATH  Google Scholar 

  31. Coulter B.T., Miller R.E.: Loading, unloading and reloading of a generalized plane plastica. Int. J. Numer Methods Eng. 28, 1645–1660 (1989)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhi Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, R., Zhong, H. Weak form quadrature element analysis of planar slender beams based on geometrically exact beam theory. Arch Appl Mech 83, 1309–1325 (2013). https://doi.org/10.1007/s00419-013-0748-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-013-0748-3

Keywords

Navigation