Log in

A novel conversion prediction method of MCI to AD based on longitudinal dynamic morphological features using ADNI structural MRIs

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Mild cognitive impairment (MCI) is a pre-existing state of Alzheimer's disease (AD). An accurate prediction on the conversion from MCI to AD is of vital clinical significance for potential prevention and treatment of AD. Longitudinal studies received widespread attention for investigating the disease progression, though most studies did not sufficiently utilize the evolution information. In this paper, we proposed a cerebral similarity network with more progression information to predict the conversion from MCI to AD efficiently. First, we defined the new dynamic morphological feature to mine longitudinal information sufficiently. Second, based on the multiple dynamic morphological features the cerebral similarity network was constructed by sparse regression algorithm with optimized parameters to obtain better prediction performance. Then, leave-one-out cross-validation and support vector machine (SVM) were employed for the training and evaluation of the classifiers. The proposed methodology obtained a high accuracy of 92.31% (Sensitivity = 100%, Specificity = 82.86%) in a three-year ahead prediction of MCI to AD conversion. Experiment results suggest the effectiveness of the dynamic morphological feature, serving as a more sensitive biomarker in the prediction of MCI conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256:183–194

    Article  CAS  PubMed  Google Scholar 

  2. Hänninen T, Hallikainen M, Tuomainen S, Vanhanen M, Soininen H (2002) Prevalence of mild cognitive impairment: a population-based study in elderly subjects. Acta Neurol Scand 106:148–154

    Article  PubMed  Google Scholar 

  3. Anter AM, Wei Y, Su J, Yuan Y, Lei B, Duan G, Mai W, Nong X, Yu B, Li C (2019) A robust swarm intelligence-based feature selection model for neuro-fuzzy recognition of mild cognitive impairment from resting-state fMRI. Informat Sci

  4. Li Z, Suk H-I, Shen D, Li L (2016) Sparse multi-response tensor regression for alzheimer's disease study with multivariate clinical assessments. IEEE Trans Med Imaging 35:1927–1936

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tong T, Gao Q, Guerrero R, Ledig C, Chen L, Rueckert D, AsDN I (2017) A novel grading biomarker for the prediction of conversion from mild cognitive impairment to Alzheimer's disease. IEEE Trans Biomed Eng 64:155–165

    Article  PubMed  Google Scholar 

  6. Klöppel S, Stonnington CM, Chu C, Draganski B, Scahill RI, Rohrer JD, Fox NC, Jack CR Jr, Ashburner J, Frackowiak RS (2008) Automatic classification of MR scans in Alzheimer's disease. Brain 131:681–689

    Article  PubMed  Google Scholar 

  7. Jie B, Zhang D, Cheng B, Shen D, AsDN I (2015) Manifold regularized multitask feature learning for multimodality disease classification. Hum Brain Mapp 36:489–507

    Article  PubMed  Google Scholar 

  8. Sun Z, van de Giessen M, Lelieveldt BP, Staring M (2017) Detection of conversion from mild cognitive impairment to alzheimer's disease using longitudinal brain MRI. Front Neuroinform 11:16

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang J, Liu M, An L, Gao Y, Shen D (2017) Alzheimer's disease diagnosis using landmark-based features from longitudinal structural MR images. IEEE J Biomed Health Informat 21:1607–1616

    Article  Google Scholar 

  10. Minhas S, Khanum A, Riaz F, Alvi A, Khan SA (2017) A nonparametric approach for mild cognitive impairment to ad conversion prediction: Results on longitudinal data. IEEE J Biomed Health Informat 21:1403–1410

    Article  Google Scholar 

  11. Hojjati SH, Ebrahimzadeh A, Khazaee A, Babajani-Feremi A, AsDN I (2018) Predicting conversion from MCI to AD by integrating rs-fMRI and structural MRI. Comput Biol Med 102:30–39

    Article  PubMed  Google Scholar 

  12. Griffa A, Baumann PS, Thiran J-P, Hagmann P (2013) Structural connectomics in brain diseases. NeuroImage 80:515–526

    Article  PubMed  Google Scholar 

  13. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186

    Article  CAS  PubMed  Google Scholar 

  14. Zalesky A, Fornito A, Bullmore ET (2010) Network-based statistic: identifying differences in brain networks. NeuroImage 53:1197–1207

    Article  PubMed  Google Scholar 

  15. Wei R, Li C, Fogelson N, Li L (2016) Prediction of conversion from mild cognitive impairment to Alzheimer's Disease using MRI and structural network features. Front Aging Neurosci 8:76

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yao Z, Zhang Y, Lin L, Zhou Y, Xu C, Jiang T, AsDN I (2010) Abnormal cortical networks in mild cognitive impairment and Alzheimer's disease. PLoS Comp Biol 6:e1001006

    Article  CAS  Google Scholar 

  17. Zhou Y, Lui YW (2013) Small-world properties in mild cognitive impairment and early Alzheimer’s disease: a cortical thickness MRI study. ISRN geriatrics

  18. Chupin M, Gérardin E, Cuingnet R, Boutet C, Lemieux L, Lehéricy S, Benali H, Garnero L, Colliot O (2009) Fully automatic hippocampus segmentation and classification in Alzheimer's disease and mild cognitive impairment applied on data from ADNI. Hippocampus 19:579–587

    Article  PubMed  PubMed Central  Google Scholar 

  19. Eskildsen SF, Coupé P, García-Lorenzo D, Fonov V, Pruessner JC, Collins DL, AsDN I (2013) Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning. NeuroImage 65:511–521

    Article  PubMed  Google Scholar 

  20. Ota K, Oishi N, Ito K, Fukuyama H, Group S-JS (2014) A comparison of three brain atlases for MCI prediction. J Neurosci Methods 221:139–150

    Article  PubMed  Google Scholar 

  21. Ferreira LK, Diniz BS, Forlenza OV, Busatto GF, Zanetti MV (2011) Neurostructural predictors of Alzheimer's disease: a meta-analysis of VBM studies. Neurobiol Aging 32:1733–1741

    Article  PubMed  Google Scholar 

  22. Du A-T, Schuff N, Kramer JH, Rosen HJ, Gorno-Tempini ML, Rankin K, Miller BL, Weiner MW (2007) Different regional patterns of cortical thinning in Alzheimer's disease and frontotemporal dementia. Brain 130:1159–1166

    Article  PubMed  Google Scholar 

  23. Dai Z, Yan C, Wang Z, Wang J, Cao M, **a M, Song H, Shu N, Han Y, Li K (2012) Disrupted cortical hubs in functional brain networks in early-stage Alzheimer's disease. Alzheimer's Dementia 8:P536–P537

    Article  Google Scholar 

  24. Fan Y, Batmanghelich N, Clark CM, Davatzikos C, AsDN I (2008) Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. NeuroImage 39:1731–1743

    Article  PubMed  Google Scholar 

  25. Jie B, Liu M, Liu J, Zhang D, Shen D (2017) Temporally constrained group sparse learning for longitudinal data analysis in Alzheimer's disease. IEEE Trans Biomed Eng 64:238–249

    Article  PubMed  Google Scholar 

  26. Zhu X, Suk H-I, Wang L, Lee S-W, Shen D, AsDN I (2017) A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Med Image Anal 38:205–214

    Article  PubMed  Google Scholar 

  27. Liu M, Zhang D, Shen D, AsDN I (2012) Ensemble sparse classification of Alzheimer's disease. NeuroImage 60:1106–1116

    Article  PubMed  Google Scholar 

  28. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J Roy Stat Soc Ser B (Stat Method) 67:301–320

    Article  Google Scholar 

  29. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack CR, Jagust W, Liu E (2013) The Alzheimer's Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimer's Dementia 9:e111–e194

    Article  PubMed  Google Scholar 

  30. Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L, Wu T, Jiang T, Li K (2006) Changes in hippocampal connectivity in the early stages of Alzheimer's disease: evidence from resting state fMRI. NeuroImage 31:496–504

    Article  PubMed  Google Scholar 

  31. Fischl B (2012) FreeSurfer NeuroImage 62:774–781

    Article  PubMed  Google Scholar 

  32. Zheng W, Yao Z, **e Y, Fan J, Hu B (2018) Identification of Alzheimer’s disease and mild cognitive impairment using networks constructed based on multiple morphological brain features. Biolog Psychiatry 3:887–897

    Google Scholar 

  33. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. NeuroImage 9:195–207

    Article  CAS  PubMed  Google Scholar 

  34. Destrieux C, Fischl B, Dale A, Halgren E (2010) Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage 53:1–15

    Article  PubMed  Google Scholar 

  35. Hogstrom LJ, Westlye LT, Walhovd KB, Fjell AM (2013) The structure of the cerebral cortex across adult life: age-related patterns of surface area, thickness, and gyrification. Cereb Cortex 23:2521–2530

    Article  PubMed  Google Scholar 

  36. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci 97:11050–11055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rimol LM, Nesvåg R, Hagler DJ Jr, Bergmann Ø, Fennema-Notestine C, Hartberg CB, Haukvik UK, Lange E, Pung CJ, Server A (2012) Cortical volume, surface area, and thickness in schizophrenia and bipolar disorder. Biol Psychiatry 71:552–560

    Article  PubMed  Google Scholar 

  38. Schaer M, Cuadra MB, Tamarit L, Lazeyras F, Eliez S, Thiran J-P (2008) A surface-based approach to quantify local cortical gyrification. IEEE Trans Med Imaging 27:161–170

    Article  PubMed  Google Scholar 

  39. Matthews SC, Strigo IA, Simmons AN, Yang TT, Paulus MP (2008) Decreased functional coupling of the amygdala and supragenual cingulate is related to increased depression in unmedicated individuals with current major depressive disorder. J Affect Disord 111:13–20

    Article  PubMed  Google Scholar 

  40. Hogstrom LJ, Westlye LT, Walhovd KB, Fjell AM (2012) The structure of the cerebral cortex across adult life: age-related patterns of surface area, thickness, and gyrification. Cereb Cortex 23:2521–2530

    Article  PubMed  Google Scholar 

  41. de Vos F, Schouten TM, Hafkemeijer A, Dopper EG, van Swieten JC, de Rooij M, van der Grond J, Rombouts SA (2016) Combining multiple anatomical MRI measures improves Alzheimer's disease classification. Hum Brain Mapp 37:1920–1929

    Article  PubMed  PubMed Central  Google Scholar 

  42. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33:1

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jain A, Nandakumar K, Ross A (2005) Score normalization in multimodal biometric systems. Pattern Recogn 38:2270–2285

    Article  Google Scholar 

  45. Liu J, Ji S, Ye J (2009) SLEP: Sparse learning with efficient projections. Arizona State University 6:7

    Google Scholar 

  46. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52:1059–1069

    Article  PubMed  Google Scholar 

  47. Zheng W, Eilamstock T, Wu T, Spagna A, Chen C, Hu B, Fan J (2019) Multi-feature based network revealing the structural abnormalities in autism spectrum disorder. IEEE Trans Affect Computing

  48. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198701

    Article  CAS  PubMed  Google Scholar 

  49. Wang J, Wang L, Zang Y, Yang H, Tang H, Gong Q, Chen Z, Zhu C, He Y (2009) Parcellation-dependent small-world brain functional networks: A resting-state fMRI study. Hum Brain Mapp 30:1511–1523

    Article  PubMed  Google Scholar 

  50. Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Networks 10:988–999

    Article  CAS  PubMed  Google Scholar 

  51. Hsu C-W, Chang C-C, Lin C-J (2003) A practical guide to support vector classification. In: Taipei

  52. Novakovic J, Veljovic A (2011) C-support vector classification: Selection of kernel and parameters in medical diagnosis. In: 2011 IEEE 9th International Symposium on Intelligent Systems and Informatics. IEEE, pp 465–470

  53. Milton A, Roy SS, Selvi ST (2013) SVM scheme for speech emotion recognition using MFCC feature. Int J Computer Applic 69

  54. Wong T-T (2015) Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recogn 48:2839–2846

    Article  Google Scholar 

  55. Steyerberg EW, Harrell FE (2016) Prediction models need appropriate internal, internal–external, and external validation. J Clin Epidemiol 69:245–247

    Article  PubMed  Google Scholar 

  56. Pereira F, Mitchell T, Botvinick M (2009) Machine learning classifiers and fMRI: a tutorial overview. NeuroImage 45:S199–S209

    Article  PubMed  Google Scholar 

  57. Masso M, Rao N, Pyarasani P (2018) Modeling transcriptional activation changes to Gal4 variants via structure-based computational mutagenesis. PeerJ 6:e4844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Liu X, Huang H (2020) Alterations of functional connectivities associated with autism spectrum disorder symptom severity: a multi-site study using multivariate pattern analysis. Sci Rep 10:1–13

    Article  CAS  Google Scholar 

  59. Huang P, Cui L-B, Li X, Lu Z-L, Zhu X, ** Y, Wang H, Li B, Hou F, Miao D (2018) Identifying first-episode drug naïve patients with schizophrenia with or without auditory verbal hallucinations using whole-brain functional connectivity: A pattern analysis study. NeuroImage: Clinical 19:351–359

  60. Geng X, Xu J, Liu B, Shi Y (2018) Multivariate classification of major depressive disorder using the effective connectivity and functional connectivity. Front Neurosci 12:38

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chang C-C, Lin C-J (2011) LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2:27

    Google Scholar 

  62. Guo H, Li Y, Xu Y, ** Y, **ang J, Chen J (2018) Resting-State Brain Functional Hyper-Network Construction Based on Elastic Net and Group Lasso Methods. Front Neuroinform 12

  63. Jie B, Wee C-Y, Shen D, Zhang D (2016) Hyper-connectivity of functional networks for brain disease diagnosis. Med Image Anal 32:84–100

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chételat G, Desgranges B, Landeau B, Mézenge F, Poline J, de La Sayette V, Viader F, Eustache F, Baron J-C (2007) Direct voxel-based comparison between grey matter hypometabolism and atrophy in Alzheimer's disease. Brain 131:60–71

    Article  PubMed  Google Scholar 

  65. Misra C, Fan Y, Davatzikos C (2009) Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. NeuroImage 44:1415–1422

    Article  PubMed  Google Scholar 

  66. Vasavada MM, Wang J, Eslinger PJ, Gill DJ, Sun X, Karunanayaka P, Yang QX (2015) Olfactory cortex degeneration in Alzheimer's disease and mild cognitive impairment. J Alzheimer's Dis 45:947–958

    Article  Google Scholar 

  67. Di Paola M, Macaluso E, Carlesimo G, Tomaiuolo F, Worsley K, Fadda L, Caltagirone C (2007) Episodic memory impairment in patients with Alzheimer’s disease is correlated with entorhinal cortex atrophy. J Neurol 254:774–781

    Article  PubMed  Google Scholar 

  68. Liu Y, Paajanen T, Zhang Y, Westman E, Wahlund L-O, Simmons A, Tunnard C, Sobow T, Mecocci P, Tsolaki M (2011) Combination analysis of neuropsychological tests and structural MRI measures in differentiating AD, MCI and control groups—the AddNeuroMed study. Neurobiol Aging 32:1198–1206

    Article  PubMed  Google Scholar 

  69. Liu M, Zhang D, Shen D (2016) Relationship induced multi-template learning for diagnosis of Alzheimer’s disease and mild cognitive impairment. IEEE Trans Med Imaging 35:1463–1474

    Article  PubMed  PubMed Central  Google Scholar 

  70. **zhe Z, Jie Z, Chen W, Hegao C (2004) Study on a SVM-based data fusion method. In: IEEE Conference on Robotics, Automation and Mechatronics. IEEE, pp 413–415

  71. Yuan G, Zhuo Z, Li H (2013) Longitudinal progression of grey matter atrophy morphological characteristics in MCI patients. In: IEEE International Conference on Medical Imaging Physics and Engineering. IEEE, pp 66–71

  72. Sperry RW (1961) Cerebral organization and behavior. Science 133:1749–1757

    Article  CAS  PubMed  Google Scholar 

  73. Spulber G, Niskanen E, MacDonald S, Kivipelto M, Ferreira Padilla D, Julkunen V, Hallikainen M, Vanninen R, Wahlund L-O, Soininen H (2012) Evolution of global and local grey matter atrophy on serial MRI scans during the progression from MCI to AD. Curr Alzheimer Res 9:516–524

    Article  CAS  PubMed  Google Scholar 

  74. Braak E, Griffing K, Arai K, Bohl J, Bratzke H, Braak H (1999) Neuropathology of Alzheimer’s disease: what is new since A. Alzheimer? Eur Arch Psychiatry Clin Neurosci 249:S14–S22

    Article  Google Scholar 

  75. Li X, Wang H, Tian Y, Zhou S, Li X, Wang K, Yu Y (2016) Impaired white matter connections of the limbic system networks associated with impaired emotional memory in Alzheimer's disease. Front Aging Neurosci 8:250

    PubMed  PubMed Central  Google Scholar 

  76. Nagy Z, Hindley N, Braak H, Braak E, Yilmazer-Hanke D, Schultz C, Barnetson L, King E-F, Jobst K, Smith A (1999) The progression of Alzheimer’s disease from limbic regions to the neocortex: clinical, radiological and pathological relationships. Dement Geriatr Cogn Disord 10:115–120

    Article  CAS  PubMed  Google Scholar 

  77. Chételat G, Landeau B, Eustache F, Mézenge F, Viader F, de La Sayette V, Desgranges B, Baron J-C (2005) Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study. NeuroImage 27:934–946

    Article  PubMed  Google Scholar 

  78. Balestrini S, Francione S, Mai R, Castana L, Casaceli G, Marino D, Provinciali L, Cardinale F, Tassi L (2015) Multimodal responses induced by cortical stimulation of the parietal lobe: a stereo-electroencephalography study. Brain 138:2596–2607

    Article  PubMed  Google Scholar 

  79. Moradi E, Pepe A, Gaser C, Huttunen H, Tohka J, AsDN I (2015) Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects. NeuroImage 104:398–412

    Article  PubMed  Google Scholar 

  80. Minhas S, Khanum A, Riaz F, Khan SA, Alvi A (2018) Predicting progression from mild cognitive impairment to Alzheimer's disease using autoregressive modelling of longitudinal and multimodal biomarkers. IEEE journal of biomedical and health informatics 22:818–825

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program) (No.2014CB744600), the National Natural Science Foundation of China (Grant No.61632014, No.61210010), the Program of Bei**g Municipal Science & Technology Commission (No.Z171100000117005), the Program of International S & T Cooperation of MOST (No.2013DFA11140), Fundamental Research Funds for the Central Universities (lzujbky-2018-it64), and the Postdoctoral Funding of Zhejiang Province, China (514000-X81901).

Author information

Authors and Affiliations

Authors
  • Corresponding authors

    Correspondence to **** Hu, Zhijun Yao or Bin Hu.

    Ethics declarations

    Conflicts of interest

    None.

    Ethical standards

    Data involved in the study came from the publicly open Alzheimer's disease neuroimaging initiative (ADNI) database. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the Helsinki Declaration of 1975.

    Electronic supplementary material

    Below is the link to the electronic supplementary material.

    Supplementary file1 (PDF 339 kb)

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Guo, M., Li, Y., Zheng, W. et al. A novel conversion prediction method of MCI to AD based on longitudinal dynamic morphological features using ADNI structural MRIs. J Neurol 267, 2983–2997 (2020). https://doi.org/10.1007/s00415-020-09890-5

    Download citation

    • Received:

    • Revised:

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s00415-020-09890-5

    Keywords

    Navigation