Log in

Distributed abnormalities of brain white matter architecture in patients with dominant optic atrophy and OPA1 mutations

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Using advanced MRI techniques, we investigated the presence and topographical distribution of brain grey matter (GM) and white matter (WM) alterations in dominant optic atrophy (DOA) patients with genetically proven OPA1 mutation as well as their correlation with clinical and neuro-ophthalmologic findings. Nineteen DOA patients underwent neurological, neuro-ophthalmologic and brainstem auditory evoked potentials (BAEP) evaluations. Voxel-wise methods were applied to assess regional GM and WM abnormalities in patients compared to 20 healthy controls. Visual acuity was reduced in 16 patients. Six DOA patients (4 with missense mutations) had an abnormal I peripheral component (auditory nerve) at BAEP. Compared to controls, DOA patients had significant atrophy of the optic nerves (p < 0.0001). Voxel-based morphometry (VBM) analysis showed that, compared to controls, DOA patients had significant WM atrophy of the chiasm and optic tracts; whereas no areas of GM atrophy were found. Tract-based spatial statistics (TBSS) analysis showed that compared to controls, DOA patients had significantly lower mean diffusivity, axial and radial diffusivity in the WM of the cerebellum, brainstem, thalamus, fronto-occipital-temporal lobes, including the cingulum, corpus callosum, corticospinal tract and optic radiation bilaterally. No abnormalities of fractional anisotropy were detected. No correlations were found between volumetric and diffusivity abnormalities quantified with MRI and clinical and neuro-ophthalmologic measures of disease severity. Consistently with pathological studies, tissue loss in DOA patients is limited to anterior optic pathways reflecting retinal ganglion cell degeneration. Distributed abnormalities of diffusivity indexes might reflect abnormal intracellular mitochondrial morphology as well as alteration of protein levels due to OPA1 mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yu-Wai-Man P, Griffiths PG, Burke A, Sellar PW, Clarke MP, Gnanaraj L, Ah-Kine D, Hudson G, Czermin B, Taylor RW, Horvath R, Chinnery PF (2010) The prevalence and natural history of dominant optic atrophy due to OPA1 mutations. Ophthalmology 117(8):1538–1546. doi:10.1016/j.ophtha.2009.12.038

    Article  PubMed Central  PubMed  Google Scholar 

  2. Johnston PB, Gaster RN, Smith VC, Tripathi RC (1979) A clinicopathologic study of autosomal dominant optic atrophy. Am J Ophthalmol 88(5):868–875

    Article  CAS  PubMed  Google Scholar 

  3. Kjer P, Jensen OA, Klinken L (1983) Histopathology of eye, optic nerve and brain in a case of dominant optic atrophy. Acta Ophthalmol (Copenh) 61(2):300–312

    Article  CAS  Google Scholar 

  4. Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G, Bhattacharya SS, Wissinger B (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26(2):211–215. doi:10.1038/79944

    Article  CAS  PubMed  Google Scholar 

  5. Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, Pelloquin L, Grosgeorge J, Turc-Carel C, Perret E, Astarie-Dequeker C, Lasquellec L, Arnaud B, Ducommun B, Kaplan J, Hamel CP (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26(2):207–210. doi:10.1038/79936

    Article  CAS  PubMed  Google Scholar 

  6. Amati-Bonneau P, Valentino ML, Reynier P, Gallardo ME, Bornstein B, Boissiere A, Campos Y, Rivera H, de la Aleja JG, Carroccia R, Iommarini L, Labauge P, Figarella-Branger D, Marcorelles P, Furby A, Beauvais K, Letournel F, Liguori R, La Morgia C, Montagna P, Liguori M, Zanna C, Rugolo M, Cossarizza A, Wissinger B, Verny C, Schwarzenbacher R, Martin MA, Arenas J, Ayuso C, Garesse R, Lenaers G, Bonneau D, Carelli V (2008) OPA1 mutations induce mitochondrial DNA instability and optic atrophy ‘plus’ phenotypes. Brain 131(Pt 2):338–351. doi:10.1093/brain/awm298

    Article  PubMed  Google Scholar 

  7. Hudson G, Amati-Bonneau P, Blakely EL, Stewart JD, He L, Schaefer AM, Griffiths PG, Ahlqvist K, Suomalainen A, Reynier P, McFarland R, Turnbull DM, Chinnery PF, Taylor RW (2008) Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance. Brain 131(Pt 2):329–337. doi:10.1093/brain/awm272

    Article  PubMed  Google Scholar 

  8. Zanna C, Ghelli A, Porcelli AM, Karbowski M, Youle RJ, Schimpf S, Wissinger B, Pinti M, Cossarizza A, Vidoni S, Valentino ML, Rugolo M, Carelli V (2008) OPA1 mutations associated with dominant optic atrophy impair oxidative phosphorylation and mitochondrial fusion. Brain 131(Pt 2):352–367. doi:10.1093/brain/awm335

    Article  PubMed  Google Scholar 

  9. Yu-Wai-Man P, Griffiths PG, Gorman GS, Lourenco CM, Wright AF, Auer-Grumbach M, Toscano A, Musumeci O, Valentino ML, Caporali L, Lamperti C, Tallaksen CM, Duffey P, Miller J, Whittaker RG, Baker MR, Jackson MJ, Clarke MP, Dhillon B, Czermin B, Stewart JD, Hudson G, Reynier P, Bonneau D, Marques W Jr, Lenaers G, McFarland R, Taylor RW, Turnbull DM, Votruba M, Zeviani M, Carelli V, Bindoff LA, Horvath R, Amati-Bonneau P, Chinnery PF (2010) Multi-system neurological disease is common in patients with OPA1 mutations. Brain 133(Pt 3):771–786. doi:10.1093/brain/awq007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Audoin B, Fernando KT, Swanton JK, Thompson AJ, Plant GT, Miller DH (2006) Selective magnetization transfer ratio decrease in the visual cortex following optic neuritis. Brain 129(Pt 4):1031–1039. doi:10.1093/brain/awl039

    Article  PubMed  Google Scholar 

  11. Ciccarelli O, Toosy AT, Hickman SJ, Parker GJ, Wheeler-Kingshott CA, Miller DH, Thompson AJ (2005) Optic radiation changes after optic neuritis detected by tractography-based group map**. Hum Brain Mapp 25(3):308–316. doi:10.1002/hbm.20101

    Article  PubMed  Google Scholar 

  12. Yucel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N (2003) Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res 22(4):465–481 (S1350946203000260 [pii])

    Article  PubMed  Google Scholar 

  13. Kitajima M, Korogi Y, Hirai T, Hamatake S, Ikushima I, Sugahara T, Shigematsu Y, Takahashi M, Mukuno K (1997) MR changes in the calcarine area resulting from retinal degeneration. AJNR Am J Neuroradiol 18(7):1291–1295

    CAS  PubMed  Google Scholar 

  14. Inglese M, Rovaris M, Bianchi S, La Mantia L, Mancardi GL, Ghezzi A, Montagna P, Salvi F, Filippi M (2001) Magnetic resonance imaging, magnetisation transfer imaging, and diffusion weighted imaging correlates of optic nerve, brain, and cervical cord damage in Leber’s hereditary optic neuropathy. J Neurol Neurosurg Psychiatry 70(4):444–449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Rocca MA, Valsasina P, Pagani E, Bianchi-Marzoli S, Milesi J, Falini A, Comi G, Filippi M (2011) Extra-visual functional and structural connection abnormalities in leber’s hereditary optic neuropathy. PLoS One 6(2):e17081. doi:10.1371/journal.pone.0017081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Rocca MA, Mesaros S, Preziosa P, Pagani E, Stosic-Opincal T, Dujmovic-Basuroski I, Drulovic J, Filippi M (2013) Wallerian and trans-synaptic degeneration contribute to optic radiation damage in multiple sclerosis: a diffusion tensor MRI study. Mult Scler. doi:10.1177/1352458513485146

    Google Scholar 

  17. Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A, De Stefano N (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. NeuroImage 17(1):479–489 (S1053811902910402 [pii])

    Article  PubMed  Google Scholar 

  18. Barcella V, Rocca MA, Bianchi-Marzoli S, Milesi J, Melzi L, Falini A, Pierro L, Filippi M (2010) Evidence for retrochiasmatic tissue loss in Leber’s hereditary optic neuropathy. Hum Brain Mapp 31(12):1900–1906. doi:10.1002/hbm.20985

    Article  PubMed  Google Scholar 

  19. Riccitelli G, Rocca MA, Pagani E, Rodegher ME, Rossini PM, Falini A, Comi GC, Filippi M (2011) Cognitive impairment in multiple sclerosis is associated to different patterns of gray matter atrophy according to clinical phenotype. Hum Brain Mapp 32(10):1535–1543

    Article  PubMed  Google Scholar 

  20. Ashburner J (2007) A fast diffeomorphic image registration algorithm. NeuroImage 38(1):95–113. doi:10.1016/j.neuroimage.2007.07.007

    Article  PubMed  Google Scholar 

  21. Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103(3):247–254

    Article  CAS  PubMed  Google Scholar 

  22. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31(4):1487–1505. doi:10.1016/j.neuroimage.2006.02.024

    Article  PubMed  Google Scholar 

  23. Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15(1):1–25. doi:10.1002/hbm.1058

    Article  PubMed  Google Scholar 

  24. Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage 44(1):83–98. doi:10.1016/j.neuroimage.2008.03.061

    Article  PubMed  Google Scholar 

  25. Hua K, Zhang J, Wakana S, Jiang H, Li X, Reich DS, Calabresi PA, Pekar JJ, van Zijl PC, Mori S (2008) Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. NeuroImage 39(1):336–347. doi:10.1016/j.neuroimage.2007.07.053

    Article  PubMed Central  PubMed  Google Scholar 

  26. Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, Hua K, Zhang J, Jiang H, Dubey P, Blitz A, van Zijl P, Mori S (2007) Reproducibility of quantitative tractography methods applied to cerebral white matter. NeuroImage 36(3):630–644. doi:10.1016/j.neuroimage.2007.02.049

    Article  PubMed Central  PubMed  Google Scholar 

  27. Eickhoff SB, Heim S, Zilles K, Amunts K (2006) Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. NeuroImage 32(2):570–582. doi:10.1016/j.neuroimage.2006.04.204

    Article  PubMed  Google Scholar 

  28. Barboni P, Savini G, Parisi V, Carbonelli M, La Morgia C, Maresca A, Sadun F, De Negri AM, Carta A, Sadun AA, Carelli V (2011) Retinal nerve fiber layer thickness in dominant optic atrophy measurements by optical coherence tomography and correlation with age. Ophthalmology 118(10):2076–2080. doi:10.1016/j.ophtha.2011.02.027

    Article  PubMed  Google Scholar 

  29. Barboni P, Savini G, Cascavilla ML, Caporali L, Milesi J, Borrelli E, La Morgia C, Valentino ML, Triolo G, Lembo A, Carta A, De Negri A, Sadun F, Rizzo G, Parisi V, Pierro L, Marzoli SB, Zeviani M, Sadun AA, Bandello F, Carelli V (2014) Early macular retinal ganglion cell loss in dominant optic atrophy: genotype-phenotype correlation. Am J Ophthalmol. doi:10.1016/j.ajo.2014.05.034

    Google Scholar 

  30. Votruba M, Leary S, Losseff N, Bhattacharya SS, Moore AT, Miller DH, Moseley IF (2000) MRI of the intraorbital optic nerve in patients with autosomal dominant optic atrophy. Neuroradiology 42(3):180–183

    Article  CAS  PubMed  Google Scholar 

  31. Barboni P, Carbonelli M, Savini G, Foscarini B, Parisi V, Valentino ML, Carta A, De Negri A, Sadun F, Zeviani M, Sadun AA, Schimpf S, Wissinger B, Carelli V (2010) OPA1 mutations associated with dominant optic atrophy influence optic nerve head size. Ophthalmology 117(8):1547–1553. doi:10.1016/j.ophtha.2009.12.042

    Article  PubMed  Google Scholar 

  32. Leruez S, Milea D, Defoort-Dhellemmes S, Colin E, Crochet M, Procaccio V, Ferre M, Lamblin J, Drouin V, Vincent-Delorme C, Lenaers G, Hamel C, Blanchet C, Juul G, Larsen M, Verny C, Reynier P, Amati-Bonneau P, Bonneau D (2013) Sensorineural hearing loss in OPA1-linked disorders. Brain 136(Pt 7):e236. doi:10.1093/brain/aws340

    Article  PubMed  Google Scholar 

  33. Bette S, Zimmermann U, Wissinger B, Knipper M (2007) OPA1, the disease gene for optic atrophy type Kjer, is expressed in the inner ear. Histochem Cell Biol 128(5):421–430. doi:10.1007/s00418-007-0321-7

    Article  CAS  PubMed  Google Scholar 

  34. Rance G, Kearns LS, Tan J, Gravina A, Rosenfeld L, Henley L, Carew P, Graydon K, O’Hare F, Mackey DA (2012) Auditory function in individuals within Leber’s hereditary optic neuropathy pedigrees. J Neurol 259(3):542–550. doi:10.1007/s00415-011-6230-7

    Article  PubMed  Google Scholar 

  35. Rance G, Fava R, Baldock H, Chong A, Barker E, Corben L, Delatycki MB (2008) Speech perception ability in individuals with Friedreich ataxia. Brain 131(Pt 8):2002–2012. doi:10.1093/brain/awn104

    Article  PubMed  Google Scholar 

  36. Maresca A, la Morgia C, Caporali L, Valentino ML, Carelli V (2013) The optic nerve: a “mito-window” on mitochondrial neurodegeneration. Molecular and cellular neurosciences 55:62–76. doi:10.1016/j.mcn.2012.08.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Bette S, Schlaszus H, Wissinger B, Meyermann R, Mittelbronn M (2005) OPA1, associated with autosomal dominant optic atrophy, is widely expressed in the human brain. Acta Neuropathol 109(4):393–399. doi:10.1007/s00401-004-0970-8

    Article  CAS  PubMed  Google Scholar 

  38. Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC, Perales-Clemente E, Salviati L, Fernandez-Silva P, Enriquez JA, Scorrano L (2013) Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155(1):160–171. doi:10.1016/j.cell.2013.08.032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Lenaers G, Reynier P, Elachouri G, Soukkarieh C, Olichon A, Belenguer P, Baricault L, Ducommun B, Hamel C, Delettre C (2009) OPA1 functions in mitochondria and dysfunctions in optic nerve. Int J Biochem Cell Biol 41(10):1866–1874. doi:10.1016/j.biocel.2009.04.013

    Article  CAS  PubMed  Google Scholar 

  40. Milesi J, Rocca MA, Bianchi-Marzoli S, Petrolini M, Pagani E, Falini A, Comi G, Filippi M (2012) Patterns of white matter diffusivity abnormalities in Leber’s hereditary optic neuropathy: a tract-based spatial statistics study. J Neurol 259(9):1801–1807. doi:10.1007/s00415-011-6406-1

    Article  PubMed  Google Scholar 

  41. Rizzo G, Tozer KR, Tonon C, Manners D, Testa C, Malucelli E, Valentino ML, La Morgia C, Barboni P, Randhawa RS, Ross-Cisneros FN, Sadun AA, Carelli V, Lodi R (2012) Secondary post-geniculate involvement in Leber’s hereditary optic neuropathy. PLoS One 7(11):e50230. doi:10.1371/journal.pone.0050230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Milea D, Sander B, Wegener M, Jensen H, Kjer B, Jorgensen TM, Lund-Andersen H, Larsen M (2010) Axonal loss occurs early in dominant optic atrophy. Acta Ophthalmol 88(3):342–346. doi:10.1111/j.1755-3768.2008.01469.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

E.L. is supported by Pierfranco e Luisa Mariani Foundation, Italy. We thank Franco Carrara, Melissa Petrolini and Elisabetta Pagani for their contribution to the analysis of the data.

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical standard

This study was performed in accordance with the ethical standards laid down in the 1965 Declaration of Helsinski and its later amendments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Filippi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocca, M.A., Bianchi-Marzoli, S., Messina, R. et al. Distributed abnormalities of brain white matter architecture in patients with dominant optic atrophy and OPA1 mutations. J Neurol 262, 1216–1227 (2015). https://doi.org/10.1007/s00415-015-7696-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-015-7696-5

Keywords

Navigation